Простые модели самолетов планеров из потолочки чертежи. Alula - планер из потолочной плитки

Планер имеет плавные закругления крыла, стабилизатора и киля (рис. 1). Такая форма повышает летные качества модели. Кроме того, все соединения деталей выполнены на клею, без применения металлических уголков. Благодаря этому планер получается очень легкий, что улучшает его летные качества.

И наконец, крыло этой модели приподнято над рейкой-фюзеляжем и крепится с помощью проволочных стоек. Такое устройство повышает устойчивость модели в полете.

Работа над моделью.

Работу над моделью начнем с вычерчивания рабочих чертежей.
Фюзеляж модели состоит из рейки длиной 700 мм и сечением в носовой части 10X6, а в хвостовой 7X5 мм. Для грузика нужна дощечка толщиной 8—10 и шириной 60 мм из сосны или липы.

Грузик вырежем ножом и обработаем его торцы напильником и шкуркой. В уступ в верхней части грузика войдет передний конец рейки.
Теперь приступим к изготовлению крыла. Обе его кромки должны быть длиной 680 и сечением 4X4 мм. Два концевых закругления для крыла сделаем из алюминиевой проволоки диаметром 2 мм или из сосновых реек длиной 250 мм и сечением 4X4 мм.

Рейки перед изгибанием вымочим в горячей воде в течение 15—20 мин. Формой для изготовления плавных закруглений могут служить стеклянные либо жестяные банки или бутылки нужного дна-метра. В нашей модели формы для крыла должны иметь диаметр 110 мм, а для стабилизатора и киля —85 мм. Распарив рейки., каждую из них плотно обогнем вокруг банки и концы свяжем между собой резинкой или ниткой. Изогнув таким образом нужное количество реек, оставим их для просушки (рис.2 а).

Рис. 2 Изготовление крыла. а - получение закруглений; б - соединение "на ус"

Закругление можно сделать и другим способом. Начертим на отдельном листе бумаги закругление и поместим этот чертеж на доску. По контуру закругления вобьём гвоздики. Привязав распаренную рейку к одному из гвоздиков, начнем осторожно изгибать её. Конци реек свяжем между собой резинкой или ниткой и оставим до полного высыхания.

Концы закруглений соеденим с кромками "на ус". Для этого срежем соединяемые концы на расстоянии 30 мм от каждого из них, как показано на рис 2, б, и тщательно подгоним их друг к другу, так чтобы между ними не было просвета. Место соединений помжем клем, аккуратно обмотаем ниткой и сверху еще раз промажем клеем. Следует иметь в виду, что чем длиннее соединение "на ус", тем оно прочнее.

Нервюры для крыла изогнем на станочке. Места их установки точно разметим согласно чертежу. Крыло после каждой операции (установки закруглений нервюр) будем накладывать на чертеж, чтобы убедится в прасильности сборки.

Затем посмотрим на крыло с торца и проверим, не выступает ли какия-либо нервюра над другой «горбом».

После того как клей в местах стыка нервюр с кромками просохнет, необходимо придать крылу угол поперечного V. Перед изгибанием середину кромок крыла размочим под краном струйкой горячей воды и нагреем место изгиба над огнем спиртовки, свечи или над паяльником.

Нагреваемую часть будем нередвигать над пламенем, так чтобы от перегрева рейка не сломалась. Изгибать рейку будем до тех пор, пока место нагрева будет оставаться горячим, и отпустим ее только после того, как оно остынет.

Угол поперечного V проверим, приложив крыло торцом к чертежу. Изогнув одну кромку, точно так же изогнем другую. Проверим, одинаков ли угол поперечного V у обеих кромок — он должен составлять 8° с каждой стороны.

Крепление крыла состоит из двух V-образных стоек (подкосов), изогнутых из стальной проволоки диаметром 0,75—1,0 мм и сосновой планочки длиной 140 мм и сечением 6Х3 мм. Размеры и форма подкосов показаны на рис. 3.

Рис. 3 Крепление крыла.

Подкосы крепятся к кромкам крыла нитками и клеем. Как видно из рисунка, передний подкос выше заднего. Вследствии этого образуется установочный угол крыла.

Стабилизатор изготовим из двух реек длиной по 400 мм, а киль - из одной такой рейки.

Рейки распарим и изогнем их, используя в качестве формы банку диаметромом 85 - 90 мм. Для того чтобы крепить стабтлизатор на рейке фузеляже, выстругаем планку длиной 110 мм и высотой 3 мм. Переднюю и заднюю кромки стабилизатора в центре привяжем нитками к этой планке.

Концы закругления киля заострим, в планке рядом с кромками стабилизатора сделаем проколы-гнезда и вставим в них заостренные концы киля (рис. 4).

А теперь можно приступить к обтяжке модели папиросной бумагой. Крыло и стабилизатор оклеим только сверху, а киль — с двух сторон.

Сборка модели.

Сборку модели начнем с оперения: стабилизатор наложим на задний конец рейки-фюзеляжа и обмотаем резинкой передний и задний концы соединительной планки вместе с рейкой.

Для запуска модели на леере изготовим из стальной проволоки два крючка и привяжем их нитками к рейке-фюзеляжу между передней кромкой крыла и центром тяжести модели. Первые запуски модели осуществим с переднего крючка.

Запуск модели.

Убедивишсь, что запуск проходит успешно, можно запускать модель и со второго крючка.
Следует иметь в виду, что в ветреную погоду лучше запускать модель с переднего крючка, а в тихую — с заднего.


ПЛАНЁР ИЛИ МОТОПЛАНЁР?
Безмоторный планирующий полёт издавна привлекал человека. Казалось бы, чего проще – прикрепил на спину крылья, прыгнул с горы вниз и … полетел. Увы, многочисленные попытки подняться в воздух, описанные в исторических хрониках, привели к успеху лишь в конце XIX века. Первым планеристом стал немецкий инженер Отто Лилиенталь, создавший балансирный планёр – весьма опасный для полётов летательный аппарат. В конце концов, планёр Лилиенталя погубил своего создателя и принёс немало неприятностей энтузиастам планирующего полёта.

Серьёзным недостатком балансирного планёра был способ управления, при котором пилоту приходилось перемещать центр тяжести своего тела. При этом аппарат из послушного мог за секунды превратиться в совершенно неустойчивый, что и приводило к авариям.

Существенное изменение в планирующий летательный аппарат внесли братья Уильбер и Орвилл Райт, создавшие систему аэродинамического управления, состоящую из рулей высоты, руля направления и устройства для перекоса (гоширования) концов крыла, которое вскоре заменили более эффективными элеронами.

Бурное развитие планеризма началось в 1920-е годы, когда в авиацию пришли тысячи любителей. Именно тогда самодеятельными конструкторами многих стран были разработаны сотни разновидностей безмоторных летательных аппаратов.

В 1930 – 1950-е годы конструкции планёров постоянно совершенствовались. Характерным стало применение свободнонесущих – без расчалок и подкосов – крыльев большого удлинения, фюзеляжей обтекаемой формы, а также шасси, убирающегося внутрь фюзеляжа. Однако при изготовлении планёров по-прежнему применялись древесина и полотно.

(площадь крыла-12,24 м2; масса пустого -120 кг; взлётная масса – 200 кг; полётная центровка – 25%; Максимальная скорость – 170 км/ч; скорость сваливания – 40 км/ч; скорость снижения -0,8 м/с; максимальное аэродинамическое качество-20):

1– откидная (вбок вправо) часть фонаря; 2- приёмник воздушного давления указателя скорости; 3 – стартовый крюк; 4 – посадочная лыжа; 5 – подкос (труба из 30ХГСА 45X1,5); 6 - тормозной щиток; 7 - коробчатый лонжерон крыла (полки – сосна, стенки - берёзовая фанера); 8 – профиль крыла DFS-Р9-14, 13,8%; 9 – коробчатая фанерная балка; 10 – указатель скорости; 11 – высотомер; 12 – указатель скольжения; 13 – вариометр; 14 – резиновый амортизатор лыжи; 15 – парашют ПНЛ; 16 – колесо d300x125

АНБ-М – одноместный планёр: площадь крыла – 10,5 м2; масса пустого – 70 кг; взлётная масса – 145 кг.

АНБ-Я – двухместный планёр-спарка

А – стеклопластиковый «Пеликан»: площадь крыла -10,67 м2; масса пустого – 85 кг; взлётная масса – 185 кг; скорость сваливания – 50 км/ч.

Б-планёр «Фома» В. Маркова (г. Иркутск): масса пустого – 85 кг

А -КАИ-502: размах крыла-11 м; площадь крыла-13,2 м2; профиль крыла -РША- 15%; масса пустого -110 кг; взлётная масса-260 кг; скорость сваливания – 52 км/ч; оптимальная скорость планирования – 70 км/ч; максимальное аэродинамическое качество – 14; минимальная скорость снижения -1,3 м/с.

Б – планёр «Юность»: размах крыла – 10 м; площадь крыла - 13м2; профиль крыла – РИА – 14%; масса пустого – 95 кг; взлётная масса – 245 кг; скорость сваливания – 50 км/ч; оптимальная скорость планирования - 70 км/ч; максимальное аэродинамическое качество – 13; минимальная скорость снижения -1,3 м/с.

В – одноместный планёр УТ-3: размах крыла – 9,5 м; площадь крыла- 11,9 м2; профиль крыла- РША-15%; масса пустого-102 кг; взлётная масса - 177 кг; скорость сваливания - 50 км/ч; оптимальная скорость планирования – 65 км/ч; максимальное аэродинамическое качество – 12; минимальная скорость снижения - 1м/с

Настоящий переворот в планеризме произошёл в конце 1960-х годов, когда появились композитные материалы, состоявшие из стеклоткани и связующего (эпоксидной или полиэфирной смолы). Причём успех пластиковым планёрам обеспечивался не столько новыми материалами, сколько новыми технологиями изготовления из них элементов летательных аппаратов.

Интересно, что планёры из композитных материалов оказались тяжелее, чем деревянные и металлические. Однако высокая точность воспроизведения теоретических контуров аэродинамических поверхностей и прекрасная внешняя отделка, обеспечиваемые новой технологией, позволили существенно увеличить аэродинамическое качество планёров. Кстати, при переходе от металла к композитам аэродинамическое качество возрастало на 20 – 30 процентов. Масса конструкции планёра при этом возрастала, что приводило к увеличению скорости полёта, однако высокое аэродинамическое качество позволяло заметно уменьшить вертикальную скорость снижения. Именно это позволяло планеристам-«композитникам» выигрывать соревнования у тех, кто выступал на деревянных или металлических планёрах. В результате современные спортсмены-планеристы летают исключительно на композитных планёрах и самолётах.

Технология изготовления композитных конструкций сейчас широко используется при создании лёгких, в том числе и любительских самолётов и мотопланёров, поэтому имеет смысл рассказать о ней подробнее.

Основными элементами современного планёрного крыла являются лонжерон коробчатого или двутаврового сечения, воспринимающий изгиб и перерезывающую силу, а также верхняя и нижняя несущие обшивочные панели, воспринимающие нагрузки от кручения крыла.

Постройка крыла начинается с изготовления матриц для формования обшивочных панелей. Сначала изготавливается деревянная болванка, которая в точности воспроизводит наружные контуры панели. При этом безукоризненность теоретических контуров и чистота поверхности болванки будут определять точность и гладкость поверхностей будущих панелей.

После нанесения на болванку разделительного слоя выкладываются полотнища грубой стеклоткани, пропитанные эпоксидным связующим. Одновременно вклеивается силовой каркас, сваренный из тонкостенных стальных труб или профилей уголкового сечения. После отверждения смолы получившаяся корка-матрица снимается с болванки и устанавливается на подходящей подставке.

Аналогично изготавливаются матрицы для верхней и нижней панелей, стабилизатора, левой и правой боковин фюзеляжа, которые обычно выполняются зацело с килем. Панели имеют трёхслойную конструкцию типа «сандвич» – их внутреннюю и наружную поверхность изготавливают из стеклоткани, внутренний заполнитель – пенопласт. Толщина его в зависимости от размеров панели составляет от 3 до 10 мм. Внутренняя и наружная обшивка выкладывается из нескольких слоев стеклоткани толщиной от 0,05 до 0,25 мм. Общая же толщина стеклотканевых «корок» определяется при расчёте конструкции на прочность.

При изготовлении крыла в матрицу сначала приформовывают все слои стеклоткани, составляющие внешнюю обшивку. Предварительно стеклоткань пропитывается эпоксидным связующим -чаще всего любители используют смолу К-153. Затем на стеклоткань быстро выкладывают пенопластовый заполнитель, нарезанный полосками от 40 до 60 мм, после чего пенопласт накрывают внутренним слоем пропитанной связующим стеклоткани. Чтобы при этом не было складок, стеклотканевые обшивки вручную выравнивают и выглаживают.

Далее получившийся «полуфабрикат» необходимо накрыть воздухонепроницаемой плёнкой с врезанным в неё штуцером и приклеить её герметиком (или даже просто пластилином) к краям матрицы. Далее через штуцер из-под плёнки вакуумным насосом откачивается воздух – при этом весь набор панели плотно сдавливается и прижимается к матрице. В таком виде набор выдерживается до окончательной полимеризации связующего.

Планёр «Какаду» (площадь крыла – 8,2 м2; профиль крыла – PШA- 15%, масса пустого – 80 кг; взлётная масса – 155 кг):

1 – задний лонжерон крыла (состоит из стенки с пенопластовым заполнителем, оклеенной с двух сторон стеклотканью, и стеклопластиковых полок); 2 – заполнитель из пенопласта ПС-4; 3 - стеклопластиковая полка лонжерона (2 шт.); 4 - стеклопластиковый узел навески элерона; 5 – стеклопластиковый трубчатый лонжерон элерона (толщина стенки 0,5 мм); 6 – трёхслойные панели, образующие обшивку элеронов (заполнитель – пенопласт ПС-4 толщиной 5 мм, толщина стеклопластиковой корки снаружи 0,4 мм, изнутри - 0,3 мм); 7 - фюзеляжная балка; 8 - полка фюзеляжной балки (стеклопластик толщиной 3 мм); 9 - обшивка из стеклопластика толщиной 1 мм; 10 – блок из пенопласта ПС-4; 11 – стеклопластиковая обшивка носка крыла толщиной от 0,5 до 1,5 мм, образующая работающий на кручение контур; 12 - типовая нервюра крыла; 13 - стеклопластиковая полка нервюры толщиной 1 мм; 14 – стеклопластиковая стенка нервюры толщиной 0,3 мм; 15 – передний лонжерон крыла (по конструкции аналогичен заднему)

А – учебно-тренировочный планёр А-10Б «Беркут»:

площадь крыла -10 м2; масса пустого – 107,5 кг; взлётная масса – 190 кг; максимальная скорость 190 км/ч; скорость сваливания – 45 км/ч; максимальное аэродинамическое качество – 22; диапазон эксплуатационных перегрузок – от +5 до -2,5; расчётная перегрузка – 10.

Б - мотопланёр А-10А с двигателем «Вихрь-30-Аэро» воздушного охлаждения мощностью 21 л.с. В полёте силовая установка может убираться в отсек, расположенный в средней части фюзеляжа.

Длина мотопланёра – 5,6 м; размах крыла – 9,3 м; площадь крыла – 9,2 м2; взлётная масса – 220 кг; максимальная скорость – 180 км/ч; скорость сваливания – 55 км/ч; максимальное аэродинамическое качество – 19; диаметр воздушного винта – 0,98 м; шаг винта – 0,4 м, частота вращения винта – 5000 об/мин

двигатель – «Колибри-350» самодельный, двухцилиндровый, оппозитный, мощностью 15 л.с.; длина мотопланёра - 5,25 м; размах крыла -9 м, площадь крыла – 12,6 м2 ; профиль крыла – Р-П – 14%; профиль зависающего элерона – Р-Ш - 16%; масса пустого – 135 кг; взлётная масса – 221 кг; максимальная скорость -100 км/ч; крейсерская скорость – 65 км/ч; скорость сваливания – 40 км/ч; максимальное аэродинамическое качество -10

Аналогичная технология используется и при изготовлении полок лонжеронов, с той лишь разницей, что их выкладывают из однонаправленного стекло- или угле-волокна. Окончательную сборку крыла, оперения и фюзеляжа обычно производят в матрицах.

При необходимости в готовую отформованную трёхслойную панель вкладывают и вклеивают лонжероны, шпангоуты и нервюры, после чего всё накрывается и заклеивается верхней панелью.

Поскольку между деталями внутреннего набора и обшивочными панелями бывают большие зазоры, рекомендуется при склейке использовать эпоксидный клей с наполнителем – например, стеклянными микросферами. Контур склейки панелей снаружи (по возможности, и изнутри) проклеивается стеклотканевой лентой.

Технология выклейки и сборки описывается здесь лишь в общих чертах, но, как показывает опыт, авиаконструкторы любители достаточно быстро постигают её тонкости, особенно если есть возможность посмотреть, как это делают те, кто уже освоил эту методику.

К сожалению, высокая стоимость современных композитных планёров привела к падению массовости планёрного спорта. Обеспокоенная этим, Международная федерация авиационного спорта (ФАИ) ввела ряд упрощённых классов планёров – стандартный, клубный и им подобные, размах крыла у которых не должен превышать 15 метров. Правда, остаются сложности с запуском таких планёров – для этого требуются самолёты-буксировщики или достаточно сложные и дорогие мотолебёдки. В результате на слёты самодеятельных авиаконструкторов СЛА с каждым годом привозят всё меньше планёров. Ко всему, значительную часть планёров представляют вариации БРО-11 конструкции Б.И. Ошкиниса.

Разумеется, постройку своего первого летательного аппарата лучше всего делать по образу и подобию надёжного, хорошо летающего прототипа. Именно такое «копирование» с минимальным количеством проб и ошибок даёт тот бесценный опыт, который нельзя приобрести из учебников, инструкций и описаний.

Тем не менее, на слётах СЛА периодически появляются и оригинальные, более современные летательные аппараты, такие, как планёр АНБ-М, созданный П. Альмурзиным из города Самары.

Пётр мечтал о «крыльях» с детства. Но плохое зрение помешало ему поступить в лётное училище и заниматься авиационным спортом. Но нет худа без добра – Пётр поступил в Авиационный институт, закончил его и получил направление на авиационный завод. Именно там он сумел организовать юношеское авиационное КБ, впоследствии преобразованное в клуб «Полёт». И самыми надёжными помощниками Апьмурзина стали студенты авиационного института, столь же страстно, как и Пётр, мечтавшие о полётах.

Первой самостоятельно разработанной конструкцией клуба стал планёр, выполненный с учётом технологических особенностей современного авиационного производства – прочный, простой и надёжный, на котором можно было бы научиться летать всем членам клуба.

Первый планёр получил название АНБ – по начальным буквам фамилий его конструкторов: Апьмурзин, Никитин, Богатов. Крыло и оперение аппарата имели нетрадиционную для планёров такого класса металлическую конструкцию с использованием в качестве лонжеронов тонкостенных дюралюминиевых труб большого диаметра. Только фюзеляж на исходном варианте планёра был сделан из композитных материалов. Однако на следующем варианте кабину спроектировали металлической, что позволило на 25 – 30 кг уменьшить его массу.

Создатели планёра оказались не только грамотными конструкторами, но и хорошими технологами, знакомыми с современным авиационным производством. Так, при изготовлении тонких листовых деталей из дюралюминия они использовали простую, хорошо отработанную в авиационном производстве технологическую операцию – штамповку резиной. Необходимая для этого оснастка была сделана молодыми инженерами самостоятельно.

Сборку планёров производили в подвальном помещении, где располагался клуб. Лётные характеристики новых аппаратов оказались близкими к расчётным. Вскоре все члены клуба научились летать на самодельных планёрах, совершив десятки самостоятельных полётов с мотолебёдки. А на слётах СЛА планёры неизменно получали самую высокую оценку специалистов, признавших АНБ-М лучшим планёром первоначального обучения среди серийных и любительских конструкций. А клубу «Полёт» представили новое, более подходящее для работы помещение и он был реорганизован в «Конструкторское бюро спортивной авиации» при авиационном заводе со штатом в пять человек.

Тем временем работы по модернизации планёра АНБ продолжались – улучшалась его конструкция, проводились статические испытания на прочность, велась подготовка к серийному производству аппарата.

Всем хороши полёты на планёрах с запуском их с помощью мотолебёдки, однако у таких полётов есть один весьма существенный недостаток – кратковременность. Поэтому в развитии каждого коллектива авиаторов-любителей вполне закономерным оказывается переход от планёра к самолёту.

Используя хорошо отработанную конструкцию планёра АНБ и технологию его производства, молодые авиаконструкторы Альмурзин, Никитин, Сафронов и Царьков спроектировали и построили одноместный тренировочный самолёт «Кристалл» (подробное описание конструкции этой машины – в предыдущих «уроках» нашей школы – в «М-К» № 7 за 2013 г.).

Следует заметить, что планёры первоначального обучения всегда привлекали как любителей-одиночек, так и конструкторские коллективы. Так, одним из самых красивых учебных планёров из тех, что когда-либо демонстрировались на слётах СЛА, был признан «Какаду», созданный авиаторами-любителями из города Отрадное Ленинградской области.

Планёр этот изготовлен из трёх видов материалов – пенопласта, стеклоткани и эпоксидного связующего, причём конструкция крыла и оперения представляет собой своего рода маленький конструкторский шедевр.

Нервюры крыла сделаны из пенопласта и оклеены тонкой стеклотканью. Носок крыла, воспринимающий крутящий момент, – выклеенная на пенопластовом блоке-заполнителе стеклопластиковая оболочка. Фюзеляжная балка вырезана из пенопласта и оклеена стеклотканью, причём изгибающий момент воспринимают стеклопластиковые полки, наклеенные на верхнюю и нижнюю поверхности балки. Качество работы – отменное, внешняя отделка – на зависть многим самодельщикам. Единственное «но» – летать планёр отказывался – как оказалось, в стремлении снизить массу конструкции создатели планёра излишне уменьшили крыло.

Энтузиастам, прошедшим лётную подготовку на планёрах первоначального обучения, можно порекомендовать более сложный аппарат, например, планёр А-10Б «Беркут», созданный студентами Самарского авиационного института под руководством В. Мирошника. Интересно, что по своим параметрам планёр не соответствует ни одному спортивному классу и по своим размерам он меньше стандартных. При этом у А-10Б очень чистые аэродинамические формы, простое подкосное крыло обтянуто тканью, а сам аппарат изготовлен из наиболее распространённых пластиков. Достаточно большое аэродинамическое качество планёра даёт возможность совершать на нём даже продолжительные парящие полёты. А простая техника пилотирования позволяет и новичку справляться с подобным аппаратом. Представляется, что именно таких недорогих и «летучих» планёров не хватает отечественному планеризму.

Своеобразным развитием идей, заложенных в А-10Б, стал планёр «Мечта», созданный в московским самодеятельном клубе под руководством В. Фёдорова. По конструкции, технологии изготовления и внешнему виду «Мечта» -типичный современный спортивный планёр, а по удельной нагрузке на крыло и некоторым другим параметрам – типичный планёр первоначального обучения. Летает «Мечта» совсем неплохо, на слётах СЛА этот планёр отправляли в полёт на буксире у самолёта «Вилга».

Следует заметить, что полёты планёров с запуском их с амортизатора, лебёдки или с небольшой горы крайне ограничены во времени и не приносят пилоту должного удовлетворения. Другое дело – мотопланёр! У аппарата с мотором возможности существенно шире. Причём мотопланёры даже с маломощными моторами подчас превосходят по лётным данным некоторые лёгкие самолёты любительской постройки.

Дело, видимо, в том, что у самолётов, как правило, размах крыла существенно меньше, чем у мотопланёра, а при уменьшении размаха потери в подъёмной силе получаются большими, нежели выигрыш в массе. В результате некоторые самолёты оказываются не в состоянии оторваться от земли. В то время как тренировочные мотопланёры с более грубыми аэродинамическими формами и маломощными двигателями прекрасно летают. Единственным отличием этих летательных аппаратов от самолётов является больший размах крыла. Думается, именно поэтому тренировочные мотопланёры пользуются особой популярностью у любителей.

мощность двигателя – 36 л,с.; площадь крыла – 11м2; масса пустого – 170 кг; взлётная масса – 260 кг; полётная центровка – 28 %; максимальная скорость – 150 км/ч; скорость сваливания – 48 км/ч; скороподъёмность – 2,4 м/с; максимальное аэродинамическое качество – 15

длина мотопланёра -5 м; размах крыла -8 м; площадь крыла – 10,6 м2; масса пустого – 139 кг; взлётная масса – 215 кг; максимальная скорость -130 км/ч; посадочная скорость – 40 км/ч; частота вращения воздушного винта – 5000 об/мин.);

1 – вариометр; 2 – указатель скольжения; 3 – указатель скорости; 4 – высотомер; 5 – педали; 6 – приёмник воздушного давления; 7 – трубчатая моторама; 8 – двигатель; 9 – тросовые расчалки; 10 – тросы управления рулём направления; 11 – тяги управления рулём высоты; 12 – цельноповоротное горизонтальное оперение; 13 – трубчатые подкосы оперения; 14 – участки крыла и оперения, обтянутые лавсановой плёнкой; 15 - хвостовая рессора; 16 – стеклопластиковая гондола пилота; 17 – тяги управления элеронами; 18 – рессора главного шасси; 19 – проводка управления двигателем; 20 – стеклопластиковая рессора носовой стойки шасси; 21 - лонжерон крыла; 22 – узлы навески элерона; 23 – элерон (верхняя обшивка – стеклопластик, нижняя – лавсановая плёнка); 24 – глушитель; 25 – топливный бак; 26 – трубчатый подкос крыла

площадь крыла – 16,3 м2; профиль крыла – модифицированный GAW-1 – 15%; взлётная масса – 390 кг; масса пустого – 200 кг; максимальная скорость -130 км/ч; скороподъёмность – 2, 3 м/с; расчётная перегрузка – от + 10,2 до -5,1; максимальное аэродинамическое качество -25; тяга воздушного винта – 70 кгс при 5000 об/мин

площадь крыла – 18,9 м2; взлётная масса – 817 кг; скорость сваливания – 70 км/ч; максимальная скорость горизонтального полёта-150 км/ч

размах крыла-12,725 м; размах переднего крыла – 4,68 м; длина мотопланёра -5,86 м; площадь переднего крыла – 1,73 м2; площадь основного крыла – 7,79 м2; масса пустого – 172 кг; взлётная масса – 281 кг; максимальное аэродинамическое качество – 32; максимальная скорость – 213 км/ч; скорость сваливания – 60 км/ч; дальность полёта – 241 км; диапазон эксплуатационных перегрузок от +7 до -3

Больших успехов в создании простейших таких аппаратов достигли студенты Харьковского авиационного института, построившие под руководством А. Баранникова мотопланёр «Коршун-М», а в дальнейшем под руководством Н. Лавровой был создан более совершенный «Энтузиаст», обладавший хорошими аэродинамическими формами, закрытой кабиной пилота и тщательно закапотированным двигателем.

Следует заметить, что оба этих мотопланёра являются дальнейшим развитием популярного в своё время учебного планёра БРО-11 конструкции Б. Ошкиниса. Аппараты харьковских студентов имеют простейшую конструкцию без претензий на оригинальность, зато они очень прочны, надёжны и доступны в управлении для начинающих пилотов.

На одном из слётов СЛА Ч. Кишонас из Каунаса продемонстрировал один из лучших мотопланёров – «Гарнис», изготовленный целиком из стеклопластика. Обшивка крыльев и оперения – прозрачная лавсановая плёнка. Силовой агрегат – лодочный мотор «Вихрь-М» мощностью 25 л.с., переделанный под воздушное охлаждение. Мотор легко демонтируется с аппарата.

Мотопланёр комплектуется несколькими вариантами легкосъёмных шасси -трёхколёсным самолётного типа, планёрным одноколёсным и поплавковым.

Мотопланёры и планёры по типу «Коршуна» и «Гарниса» строятся в нашей стране многими любителями в десятках экземпляров. Хочется обратить внимание читателей лишь на одну особенность подобных аппаратов, построенных по образу и подобию БРО-11. Как известно, прототип (а также его многочисленные копии) оснащён зависающими элеронами, кинематически связанными с рулём высоты. При заходе на посадку пилот берёт на себя ручку управления, при этом элероны синхронно отклоняются вниз, что вызывает возрастание подъёмной силы и уменьшение скорости. Но, если пилот случайно перебрал ручку на себя, а затем, исправляя ситуацию, отдал ручку от себя, – последнее движение ручки вызывает не только отклонение руля высоты, но и возврат элеронов в исходное положение, что равносильно уборке закрылков. При этом подъёмная сила резко уменьшается – и планёр «проваливается», что весьма опасно при полёте на небольшой высоте, перед посадкой.

Эксперименты, проведённые планеристами, летающими на БРО-11, показали, что без зависания элеронов взлётно-посадочные характеристики планёра практически не ухудшаются, но пилотировать такой планёр намного проще, что заметно снижает аварийность. При этом для крыла мотопланёра-тихохода более выгодным может оказаться выпукло-вогнутый профиль «Геттинген F-17» – его в своё время использовали на мотопланёре Феникс-02, созданном инженером из ЦАГИ С. Поповым.

Популярность мотопланёров обусловлена, прежде всего, возможностью их старта без специальных буксировочных приспособлений, а также вследствие появления простых, лёгких и достаточно мощных моторов. На слётах СЛА демонстрировалось немало оригинальных, эффектно летающих аппаратов такого класса, созданных конструкторами-любителями. Прекрасный мотопланёр А-10А был построен В. Мирошником на базе уже знакомого читателям А-10Б. Силовой агрегат у него – двигатель «Вихрь-25, переделанный под воздушное охлаждение; размещается он над фюзеляжем, за кабиной пилота. Двигатель, как правило, использовался лишь для взлёта и набора высоты. После его выключения специальный механизм складывал ферму с установленным на неё двигателем и убирал её в фюзеляж, что значительно снижало аэродинамическое сопротивление летательного аппарата. При необходимости двигатель с помощью того же механизма можно было выдвинуть из ниши и запустить.

Ещё один летательный аппарат, построенный студентами из Самарского авиационного института, – двухместный мотопланёр «Аэропракт-18». Он компактен, лёгок, сделан целиком из пластика и оснащён 30-сильным двигателем «Вихрь-30-аэро» с воздушным охлаждением – у этой модели двигатель в полёте не убирается, что позволило упростить и облегчить конструкцию.

Тем не менее, конструкторы-любители продолжали разрабатывать оригинальные варианты механизмов уборки моторов в полёте, и одно из таких наиболее интересных устройств было создано группой московских авиаторов-любителей под руководством А. Фёдорова для одноместного двухмоторного мотопланёра «Истра». Лёгкие моторы были полностью вписаны в обводы крыла, не выступая за его теоретические контуры, а воздушные винты вращались в щелях за задним лонжероном крыла. При остановке двигателей винты фиксировались в горизонтальном положении и закрывались сдвижным хвостовиком крыла.

Ещё одна разработка московских планеристов-любителей – двухместный мотопланёр «Байкал», также оснащённый двумя двигателями. Правда, размещены они не на крыле, а на V-образном пилоне над фюзеляжем. В полёте моторы убираются в фюзеляж – так же, как на «Истре».

Особенность мотопланёров А.Фёдорова – композитная конструкция, выполненная в соответствии с канонами современных технологий.

Принято считать, что аэродинамическая схема современных планёров и мотопланёров полностью стабилизировалась. И в самом деле, все современные аппараты такого типа мало отличаются друг от друга, а их геометрические пропорции практически одинаковые. Тем не менее, конструкторская мысль ищет всё новые решения, иные схемы и пропорции. Подтверждением тому стали летательные аппараты швейцарских конструкторов и мотопланёр Берта Рутана «Солитар». Эти оригинальные мотопланёры, выполненные по схеме «утка», ещё раз продемонстрировали преимущества несущего горизонтального оперения.

Предлагаемые простые конструкции планеров разработаны в кружке экспериментального конструирования СЮТ г.Костромы. Все они выполнены в основном из пенопласта, но отличаются друг от друга габаритами, пропорциями, массой, технологией изготовления крыла, летными характеристиками. Модели рекомендуются для изготовления юными моделистами в домашних условиях, на кружковых занятиях и уроках технологии.

Маленький легкий планер с размахом крыла 200 мм и массой 4 г (рис.1) относится к разряду простейших развлекательных моделей и может быть изготовлен за несколько часов. Его запускают в спортивном зале с руки или в безветренную погоду на спортивной площадке с использованием катапульты. Модель с размахом крыла 230 мм и массой 7 г (рис.2) несколько тяжелее и прочнее, продолжительность ее полета выше (примерно 15 секунд). Планер предназначен для запуска с руки и с использованием катапульты (даже при небольшом ветре) на футбольном или другом поле.

Более сложная модель (рис.3) с размахом крыла 400 мм и массой 26 г является метательным планером. Постройкой метательных планеров с увлечением занимаются как начинающие, так и опытные моделисты. По данному классу моделей проводятся соревнования. Главная задача - достижение максимальной продолжительности полета. Набор высоты обеспечивается только от броска рукой. При конструировании такого планера приходится решать целый комплекс задач. Нужно добиться оптимального соотношения массы модели, формы и площади несущих поверхностей, чтобы планер можно было забросить на максимальную высоту. После взлета модель должна четко переходить в режим устойчивого продолжительного планирования. С этой целью в предлагаемой конструкции нос фюзеляжа сделан достаточно коротким, а хвостовая балка - длинной, но легкой и прочной. При такой аэродинамической схеме почти невесомое и компактное хвостовое оперение находится вне зоны завихрений от крыла и работает эффективно. Даже в отсутствие восходящих потоков учащимся 5 - 6 классов при правильно выполненном броске удавалось достигнуть продолжительности полета микропарителя до 30 секунд. Для запуска такой модели требуется поле размерами не менее 200×200 метров, лучше за городом.

Подготовительная работа заключается в выполнении чертежей деталей в натуральную величину, изготовлении шаблонов крыла, стабилизатора, киля и носовой части фюзеляжа, подборе материалов. Потребуются потолочная пенопластовая плитка толщиной 3,5 мм габаритами 500×500 мм (продается в магазинах строительных и отделочных материалов), плотные сорта пенопласта, древесина (ель, сосна, липа), клей ПВА и краски.

1 - центровочный груз (свинец); 2 - нос фюзеляжа; 3 - фюзеляж (сосна); 4 - крыло; 5 - стабилизатор; 6 - киль; материал деталей 2, 4, 5, 6 - пенопласт

1 - центровочный груз (свинец); 2 - нос фюзеляжа; 3 - фюзеляж (сосна); 4 - киль; 5 - крыло; 6 - лонжерон (спичка); 7 - стабилизатор

1 - центровочный груз (свинец); 2 - нос фюзеляжа; 3 - фюзеляж (сосна); 4 - киль; 5 - крыло; 6 - усиление под палец (фанера s1,5); 7 - лонжерон (сосна); 8 - стабилизатор

Создание моделей рекомендуется начинать с изготовления крыла, киля и стабилизатора. Эти детали после разметки контура по шаблонам можно вырезать скальпелем. Затем следует приступить к их профилированию. В целях упрощения конструкции крыло по всему размаху имеет плоско-выпуклый профиль. Значительную часть материала от линии максимальной толщины лучше снять острым ножом. Доводка поверхности осуществляется с помощью шкурки различной зернистости, наклеенной на фанерные пластины размерами приблизительно 50×200 мм, при постоянном контроле по шаблонам. Для придания крылу модели (рис. 1,2) небольшой поперечной V-образности перед вклеиванием его в прорезь фюзеляжа по оси симметрии на верхней поверхности нужно сделать надрез. Во второй из предлагаемых конструкций центральная часть крыла усилена коротким лонжероном из спички. В модели метательного планера (рис.3) на нижней поверхности крыла следует сделать прорезь и вклеить в нее лонжерон. Далее от крыла, там, где заканчивается лонжерон, нужно отпилить «уши» и вновь приклеить их под необходимым углом. Предварительно стыковые поверхности скашиваются шкуркой так, чтобы зазоры были минимальными.

Как известно из практики запуска метательных планеров, хороший бросок получается, когда фюзеляж захвачен большим и средним пальцами, а последний сгиб указательного опирается на заднюю кромку корневой части правой консоли. Поэтому ее нижнюю поверхность целесообразно усилить фанерной или картонной 1,5-мм накладкой под указательный палец. Переднюю кромку крыла можно оклеить тонкой цветной бумагой на жидком ПВА. Киль и стабилизатор моделей имеют профиль «ровной доски» с закругленными краями. Надрезом следует выделить «руль поворота» и «руль высоты».

Носовая часть фюзеляжа моделей изготовлена из плотного пенопласта, а рейка фюзеляжа - из легкой древесины. В носовой части сделана прорезь точно по профилю крыла и высверлена полость под свинцовый груз. Точное место расположения паза на нижней поверхности фюзеляжа для зацепления резинового шнура катапульты подбирается экспериментально.

Соединение деталей осуществляется на клее ПВА. Крыло аккуратно вставляется в прорезь фюзеляжа и фиксируется клеем. Зону стыка крыла и фюзеляжа следует усилить полосками из чертежной бумаги. Далее приклеивают киль и стабилизатор.

Отделка моделей включает окраску нитроэмалью рейки фюзеляжа и оклеенных бумагой участков крыла.

Отладку планеров начинают с устранения перекосов, а затем приступают к балансировке. Центр тяжести моделей, запускаемых с использованием катапульты (рис. 1,2), должен находиться на расстоянии, равном примерно 33% ширины крыла, если отсчитывать от места соединения его передней кромки с фюзеляжем. У метательного планера центровка примерно - 45°. Регулировка осуществляется увеличением массы центровочного груза или ее уменьшением путем его высверливания.

Во время пробных запусков моделей за счет минимального отклонения рулей высоты и направления добиваются плавного перехода после набора высоты к парению в левом вираже. Рекомендации по запуску и отладке простейших, а также метательных планеров ранее приводились в журнале.

А. ТИХОНОВ, г. Кострома

Несколько лет у меня пролежал чертеж этой модели. Зная, что она неплохо летает, я почему-то никак не мог решиться на ее постройку. Чертеж был опубликован в каком-то из чешских журналов в начале 80-х годов. К сожалению, мне не удалось выяснить ни названия журнала, ни года издания. Единственная информация, которая присутствует на чертеже - это название модели (Sagitta 2m F3B), дата - то ли постройки, то ли изготовления чертежа - 10.1983 и, судя по всему, имя и фамилия автора - Lee Renaud. Все. Больше никаких данных.

Когда возник вопрос постройки планера, более-менее одинаково пригодного для полетов как в термиках, так и в динамиках, я вспомнил о лежащем без дела чертеже. Одного внимательного рассмотрения конструкции хватило, чтобы понять, что эта модель очень близка к искомому компромиссу. Таким образом, проблема выбора модели была решена.

Даже если в моем распоряжении имеется готовый к использованию чертеж какой-нибудь модели, я все равно перечерчиваю его своей рукой, карандашом на миллиметровке. Это помогает досконально понять устройство модели и упрощает процесс сборки - сразу можно разработать очередность изготовления деталей и последующего их монтажа. Поэтому постройка началась с чертежной доски. В конструкцию планера были внесены небольшие изменения, позволившие безбоязненно затягивать модель как на леере, так и на лебедке.

Интенсивная эксплуатация планера летом 2003 года показала, что он отличается предсказуемостью, устойчивостью и, одновременно, верткостью - даже без элеронов. Планер вполне удовлетворительно ведет себя как в термиках, позволяя набирать высоту даже в слабых потоках, так и в динамиках. Замечу, что модель получилась излишне легкая, и иногда требуется догрузка планера - от 50 до 200 грамм. Для полетов в сильных динамических потоках планер приходится догружать больше - грамм на 300…350.

Новичкам модель может быть рекомендована только в том случае, если обучение проводится совместно с инструктором. Дело в том, что модель имеет относительно слабые хвостовую балку и носовую часть. Это не доставляет никаких проблем, если вы худо-бедно умеете сажать планер, но вот сильного удара носом о землю модель может и не выдержать.

Характеристики

Основные характеристики планера таковы:

Требуемые для изготовления материалы:

  • Бальза 6х100х1000 мм, 2 листа
  • Бальза 3 х100х1000 мм, 2 листа
  • Бальза 2 х100х1000 мм, 1 лист
  • Бальза 1.5 х100х1000 мм, 4 листа
  • Дюралюминиевая пластина 300х15х2 мм
  • Небольшие отрезки фанеры толщиной 2 мм - примерно 150х250 мм.
  • Густой и жидкий циакрин - по 25 мл. Тридцатиминутная эпоксидная смола.
  • Пленка для обтяжки модели - 2 рулона.
  • Небольшие куски 8 и 15-мм бальзы - примерно 100х100 мм.
  • Кусочки текстолита толщиной 1 и 2 мм - 50х50 мм вполне хватит.

Изготовление планера занимает менее двух недель.

Конструкция модели весьма проста и технологична. Наиболее сложные и ответственные узлы - это крепление консолей к фюзеляжу и качалка цельноповоротного стабилизатора - потребуют максимума аккуратности и внимания при постройке модели. Внимательно изучите конструкцию планера и технологию сборки, прежде чем приступать к его сооружению - потом не будете терять время на переделки.

Описание модели рассчитано на моделистов, уже имеющих элементарные навыки постройки радиоуправляемых моделей. Поэтому постоянные напоминания "проверьте отсутствие перекосов", "аккуратно сделайте [то-то]" из текста исключены. Аккуратность и постоянный контроль - вещи сами собой разумеющиеся.

Изготовление

Обратите внимание, что если в тексте не указано иное, то во всех бальзовых деталях волокна расположены вдоль более длинной стороны детали.

Фюзеляж и хвостовое оперение

Постройку планера начнем с фюзеляжа. Он имеет квадратное сечение; изготавливается из бальзы толщиной 3 мм.

Взгляните на чертеж. Фюзеляж образован четырьмя пластинами бальзы толщиной 3 мм - это две стенки 1, а также верхняя 2 и нижняя 3 крышки. Все шпангоуты 4-8, кроме шпангоута 7 , изготовлены из бальзы толщиной 3 мм.

Вырезав все необходимые детали, повозимся с изготовлением шпангоута 7 из трех- или четырехмиллиметровой фанеры. После этого, установив шпангоуты на чертеже, застеленном прозрачной пленкой, приклеиваем к ним стенки. Сняв получившуюся коробку с чертежа, приклеим нижнюю крышку фюзеляжа, а затем уложим боудены 9 управления рулем высоты и рулем направления (а при желании - и трубочку для прокладки антенны).

Займемся носовой частью фюзеляжа. Носовую бобышку 10 наберем из обрезков толстой бальзы, съемный фонарь - из бальзы толщиной 3 (стенки 11) и 6 (верхняя часть 12) миллиметров. Аппаратуру управления пока не монтируем. Единственное, что нужно сделать - это примерить ее по месту. При необходимости можете удалить шпангоут 6, являющийся скорее технологическим, нежели силовым элементом.

Переходим к средней части фюзеляжа, к которой крепится крыло. Нам предстоит изготовить фанерную коробку 13, увязывающую воедино лонжерон крыла, собственно фюзеляж и буксировочный крючок. Детали коробки изображены на отдельном эскизе. Она состоит из двух стенок 13.1 и дна, представленного переклеем из деталей 13.2 и 13.3. Запасаемся двухмиллиметровой фанерой, парой пилок для лобзика - и начинаем.

Собрав коробку "всухую", подгоняем ее к внутренней части фюзеляжа, и затем вклеиваем. Пропилы под соединительную направляющую консолей сделаем позднее, по месту. По месту же делаются и прочие отверстия в коробке.

После монтажа коробки можно приклеить верхнюю крышку фюзеляжа 2.

Начинается один из самых сложных этапов сборки фюзеляжа - изготовление, подгонка и монтаж киля и качалки стабилизатора.

Как видим из чертежа, киль (он совсем небольшой, поскольку остальное является рулем направления) образован рамкой из передней 14, задней 16 и верхней 15 кромок, выполненных из двухмиллиметровой бальзы и вклеенных между боковинами фюзеляжа.

В рамке монтируется качалка стабилизатора 17, и затем к рамке же приклеивается боковая зашивка - стенки киля 18 из бальзы толщиной 3 мм.

Съемные половинки стабилизатора крепятся на силовой штырь 19 из стальной проволоки диаметром 3 мм, и приводятся в движение коротким штырьком 20 (стальная проволока 2 мм), вклеенным в переднюю часть качалки. Качалка изготовлена из текстолита толщиной 2 мм, или из фанеры такой же толщины. Между качалкой и стенками киля устанавливаются тонкие шайбы, одетые на силовой штырь.

С виду все просто - вырезаем все детали и собираем воедино. Будьте крайне внимательны!!! После того, как собрана рамка, образующая киль, и с одной стороны к ней приклеена зашивка, вы начнете устанавливать качалку руля высоты, подсоедините к ней боуден и приготовитесь приклеить стенку киля с другой стороны.

Вот тут-то вас и ждет главная засада: если хотя бы капля циакрина попадет на качалку, которая без больших зазоров установлена между стенками киля - пиши пропало. Качалка присохнет к стенке намертво, и сборку киля придется повторять заново. Особенно аккуратным следует быть при проклеивании силового трехмиллиметрового стального штыря - по нему циакрин очень легко может попасть внутрь киля. Пользуйтесь густым клеем.

Не забудьте после сборки киля приклеить текстолитовые накладки 21, фиксирующие силовой штырь от перекоса.

В заключение установим форкиль 22 и вышкурим фюзеляж.

Сборка руля направления и стабилизатора настолько проста, что не представляет никаких сложностей. Отмечу лишь, что отверстия для силового штыря в половинках стабилизатора после сверления пропитываются жидким циакрином, а затем сверлятся повторно.

Обратите внимание, что передние части рулей выполнены из цельных кусков бальзы (8 мм толщиной на руле направления и 6 мм толщиной на стабилизаторе). Это существенно упрощает процесс сборки модели, а вот излишней массы не добавляет, ибо, как уже говорилось, планер и без этого слишком легок.

Собрав и спрофилировав рули, "вчерне" навесим их на свои места и проверим легкость хода. Все хорошо? Тогда снимем их, уберем подальше и перейдем к крылу.

Крыло

Конструкция крыла настолько стандартна, что не должна вызывать вообще никаких вопросов. Это наборный бальзовый каркас с лобиком 8, зашитым бальзой толщиной 1.5…2 мм, нервюры 1-7 из двухмиллиметровой бальзы с полками из бальзы толщиной 1.5…2 мм, и широкая задняя кромка 11 (бальза 6х25). Лонжероны 9 - сосновые рейки сечением 6х3 мм, между ними монтируется стенка из бальзы 10 толщиной 1.5…2 мм.

Следует заметить, что лонжерон, в общем-то, окажется хлипковат для такого размаха - в случае, если придется затягивать планер на лебедке. Для ручной затяжки его прочность вполне достаточна.

Мне же, во избежание "дров", пришлось приклеить полоски углеткани на наружную сторону каждой из полок лонжерона. После такого усовершенствования планер позволил затягивать себя на современной лебедке для планеров класса F3B. Консоли, конечно же, изгибаются, но нагрузку держат. Пока держат, по крайней мере…

Сборка крыла начинается с изготовления нервюр. Нервюры центроплана обрабатываются в "пакете" или "пачке". Делается это так: изготовим два шаблона нервюр из фанеры толщиной 2…3 мм, вырежем заготовки нервюр и соберем этот пакет воедино с помощью шпилек с резьбой М2, поместив шаблоны по краям пакета. После обработки такое решение обеспечит одинаковый профиль по всему размаху центроплана. На чертеже центропланные нервюры имеют номер "1", а нервюры ушей пронумерованы с "2" до "7".

С нервюрами "ушей" поступим по-другому. Распечатав их на лазерном принтере с максимальным контрастом, приложим распечатку к листу бальзы, из которого будем резать нервюры. После этого разогретым "на полную" утюгом прогладим распечатку, и изображения нервюр будут перенесены на бальзу. Не забудьте только, что бумагу нужно класть изображением на бальзу, а саму бальзу лучше сначала отшлифовать мелкой шкуркой. Теперь можем заняться вырезанием отпечатанных деталей. Заодно подготовьте детали зашивки лобика 8 и центропланной части 12, нарежьте полосочки бальзы для полок нервюр 14, подготовьте заготовки передних кромок 13 и стенок лонжерона 10, спрофилируйте задние кромки 11. Обратите внимание, что стенки лонжерона 10 имеют отличное от других деталей направление волокон древесины - вдоль коротких сторон. По окончании подготовки можем заняться сборкой крыла, не отвлекаясь на изготовление требуемых деталей.

Сначала делаем центропланные части. Крепим нижнюю полку лонжерона на чертеж, устанавливаем на нее нервюры и устанавливаем верхнюю полку лонжерона. Затем приклеиваем стенки лонжерона из трехмиллиметровой бальзы 15, расположенные в корневой части крыла. После этого обматываем нитками получившуюся коробку. Промажем нитки клеем.

Аналогичную операцию проведем с другой стороны консоли - там, где будет крепиться "ухо". Только стенки в этом случае будут из двухмиллиметровой бальзы. Приклеив бальзовые стенки лонжерона, обмотаем получившуюся коробку. В дальнейшем в нее войдет направляющая крепления "уха"

Обратите внимание, что корневая нервюра, примыкающая к центроплану, устанавливается не перпендикулярно лонжерону и кромкам, а под небольшим углом.

Следующий этап - приклеивание задней кромки. Излишне говорить, что эта операция, как, впрочем, и следующая, также проводится на стапеле.

Собираем переднюю часть крыла. Порядок таков: нижняя зашивка, затем верхняя, затем стенка лонжерона из бальзы толщиной 1.5 или 2 мм. Сняв получившуюся консоль со стапеля, приклеиваем переднюю кромку 13. Обратите внимание, как резко возрастает прочность крыла на крутку после "замыкания" лобика.

Заключительный этап сборки центроплана - приклеивание полок нервюр и бальзовой зашивки корневой части крыла (три центральные нервюры).

Сборка "уха" полностью аналогична сборке центроплана и потому не описана. Единственное, что стоит заметить - нервюра, примыкающая к центроплану, установлена не вертикально относительно плоскости крыла, а под углом в 6 градусов - чтобы не было зазора между "ухом" и центропланом. Корневую часть лонжерона "уха" опять-таки обматываем нитками с клеем.

Теперь возьмем в руки узкий длинный нож и надфиль. Нам предстоит выполнить отверстия для направляющих центроплана 15 и "уха"16 в коробках, образованных лонжероном и его стенками - два в центроплане и одно - в "ухе". Прорезав бальзовые торцевые нервюры, надфилем выравниваем внутреннюю поверхность коробок. "Ухо" с центропланом пока не склеиваем. Полностью аналогично собираем вторую консоль и переходим к изготовлению направляющих.

Центропланная направляющая несет всю нагрузку, прилагаемую леером к модели при затяжке. Поэтому в ее основе - полоса дюралюминия толщиной 2…3 мм. Она обрабатывается так, чтобы без усилий и люфтов входить в коробку, предназначенную для нее. После этого к ней тридцатиминутной смолой приклеивается аналогичная по форме фанерная накладка, одна или две - это зависит от толщины использованного дюраля и фанеры. Готовая направляющая обрабатывается так, чтобы обе консоли надевались на нее с небольшим усилием.

Направляющие, предназначенные для крепления "ушей" к центропланным частям крыла, делаются из трех кусочков двухмиллиметровой фанеры, склеенных вместе - для получения суммарной толщины 6 мм. После того, как вы изготовите направляющие для "ушей", "уши" можно приклеивать к центропланным частям. Лучше всего для этого использовать эпоксидную смолу.

Осталось лишь вклеить "языки" 17 и штыри фиксации консолей 18. Для "языков" используется двухмиллиметровая фанера, для штырьков - бук, береза или тонкостенная алюминиевая или стальная трубка.

Вот, собственно, и все. Осталось лишь вырезать в центропланной части фюзеляжа окна для направляющей, "языков" и просверлить отверстия для штырей фиксации крыла. Имейте в виду, что здесь надо контролировать как отсутствие взаимных перекосов между крылом и стабилизатором, так и идентичность установочных углов левой и правой консолей. Поэтому делайте все не спеша и тщательно производите измерения. Подумайте: может быть, есть удобная для вас технология, позволяющая избежать возможных огрехов при вырезании окон?

Финальные операции

Теперь следует сделать крышку центропланного отсека фюзеляжа 23. Она делается из бальзы или фанеры. Способ ее крепления произволен, важно лишь, чтобы она была съемной и прочно фиксировалась на своем месте. После того, как крышка сделана, сверлим отверстие диаметром 3 мм в ней и соединительных языках. Шпилька диаметром 3 мм, вставленная потом в эти отверстия, не позволит консолям разъезжаться при нагрузках.

Для повышения прочности фюзеляжа в месте крепления направляющей крыла нам придется изготовить еще один конструктивный элемент 24, образованный четырьмя распорками внутри фюзеляжа, выполненными из трехмиллиметровой фанеры. Вставив направляющую 15 в приготовленные для нее отверстия, приклеим эти распорки вплотную к ней. Получили некий "канал" для направляющей. Он не даст ей слишком свободно ходить в отверстиях и одновременно добавит жесткости фюзеляжу. Пятый кусочек "трешки" вклеим примерно на 100 мм ближе к хвосту. Получилось, что бальзовый фюзеляж в центропланной части усилен замкнутой коробкой из фанеры. Эта схема полностью оправдала себя на практике.

Теперь самое время приклеить и обработать законцовки "ушей" 19. После этого можно заняться балансировкой модели, и проверить, не перевешивает ли одна из консолей.

Обтяжка планера не слишком сложна. Если вы занимаетесь этим впервые, прочитайте инструкцию по использованию пленки. В ней, как правило, детально рассказано, как использовать именно эту пленку.

Монтаж аппаратуры радиоуправления особых сложностей вызвать не должен - просто посмотрите на фотографии.

Не забудьте, что стабилизатор на модели цельноповоротный. Отклонения его в каждую сторону должны составлять 5…6 градусов. И даже при таких расходах он может оказаться слишком эффективным, а модель - "дерганой".

Углы отклонения руля направления должны составлять 15…20 градусов. Щель между рулем направления и килем желательно заклеить скотчем. Это немного повысит эффективность руля.

Буксировочный крючок 25 изготовлен из дюралюминиевого уголка. Место монтажа его указано на чертеже.

Из пластин свинца толщиной около 3 мм нарежем грузиков - по форме они должны повторять центропланный отсек фюзеляжа. Суммарная масса "грузила" должна составлять минимум 150 грамм, а лучше - 200…300. Оперируя количеством пластин в фюзеляже, вы сможете настроить модель под разные погодные условия.

Не забудьте отцентровать модель. Расположение ЦТ на лонжероне будет являться оптимальным для первых (и не только) полетов.

Описанный здесь планер изготавливался без элеронов. Если вам кажется, что вы жить без них не сможете - поставьте их. Если не кажется - не морочьте себе голову, рулем направления модель управляется вполне нормально.

Тем не менее, на чертеже указан примерный размер элеронов. Крепеж рулевых машинок элеронов вы можете продумать сами. Конечно, с точки зрения аэродинамики и эстетики лучше всего использовать минимашинки.

Полеты

Испытания

Если вы собрали модель без перекосов, то особых проблем с испытаниями не будет. Выбрав день с ровным несильным ветром, отправьтесь на поле с густой травой. Собрав модель и проверив работу всех рулей, разбегитесь и выпустите планер против ветра под небольшим углом снижения или горизонтально. Модель должна лететь прямо и отзываться даже на небольшие отклонения руля направления и руля высоты. Правильно настроенный планер пролетает минимум 50 метров после несильного броска с руки.

Старт на леере

Готовясь к старту с леера, не забудьте о блоке. Планер достаточно скоростной, и в слабый ветер могут появиться проблемы с недостатком скорости затягивающего, даже при затяжке с блоком.

Диаметр леера может быть 1.0…1.5 мм, длина - 150 метров. Предпочтительнее разместить на его конце парашютик, а не флажок - в этом случае ветер будет подтаскивать леер обратно к старту, уменьшая дистанцию, пробегаемую вами или вашим помощником в поисках конца леера.

Проверив функционирование аппаратуры, прицепите модель к лееру. Дав вашему помощнику команду начинать движение, держите планер, пока хватает сил. Помощник тем временем должен продолжать бег, растягивая леер. Отпустите планер. В начальный момент взлета руль высоты должен быть в нейтрали. Когда планер наберет метров 20..30 высоты, можете потихоньку начинать брать ручку "на себя". Не берите слишком много, иначе планер сойдет с леера раньше времени. Когда модель наберет максимальную высоту, энергично дайте рулей вниз, вводя модель в пикирование, а затем - на себя. Это так называемый "динамостарт". При определенной практике вы поймете, что он позволяет набрать еще несколько десятков метров высоты.

Полет и посадка

Имейте в виду, что при резкой даче руля направления в какую-либо сторону планер склонен к некоторой курсовой раскачке. Это явление вредно тем, что слегка притормаживает модель. Старайтесь перемещать ручку руля направления небольшими плавными движениями.

Если погода практически штилевая, планер можно не догружать. Если же вы испытываете проблемы с полетом против ветра или с входом в термик, догрузите модель на 100-150 грамм. Затем можно подобрать массу балласта более точно.

Посадка, как правило, не доставляет хлопот. Если вы построили планер без элеронов, старайтесь не делать больших кренов низко над землей, ибо модель с запозданием реагирует на отклонение руля направления.

Что любопытно, догрузка практически не влияет на способность модели к парению. Догруженный планер хорошо держится даже в относительно слабых восходящих потоках. Наибольшее время полета в термиках, достигнутое за время эксплуатации модели - 22 мин 30 сек.

И та же самая догрузка просто необходима для полета в динамических потоках. Например, для нормального полета в "динаме" в Коктебеле, планер пришлось загрузить максимально - на 350 грамм. Только после этого он обрел способность нормально двигаться против ветра и развивать потрясающие скорости в динамическом потоке.

Заключение

За прошедший сезон модель показала себя как неплохой планер для любителей. Однако это не значит, что она совсем лишена недостатков. Среди них:

  • слишком толстый профиль. Было бы интересно попробовать использовать на этом планере Е387 или нечто подобное.
  • отсутствие развитой механизации крыла. Строго говоря, изначально планер содержал и элероны и интерцепторы, но с целью упрощения конструкции и развития навыков точной посадки от них решено было отказаться.

Тем не менее, в остальном планер проработан "на отлично".

В настоящее время в процессе постройки находится электропланер на основе описанной модели. Различия в уменьшенной хорде крыла, измененном профиле, наличии элеронов и закрылков, стеклопластиковом фюзеляже, да и во многом другом. Сохранена лишь общая геометрия прототипа, и то не везде. Впрочем, будущая модель - тема отдельной статьи…

В последнее время в магазинах игрушек начали появляться небольшие модельки планеров из EPP, проще говоря из потолочной плитки. Конечно такая игрушка красиво летает,выдерживает много полётов и её можно пускать везде, но цены кусаются- 9 долларов за штуку. Но можно сделать и самодельную модельку потратив не более 30 рублей на самолёт! Итак, начнём ваять свою игрушку.

Материалы:
*потолочная плитка без рельефного рисунка
*клей ПВА
*сосновая рейка 4Х4 мм
*кнопки
*прищепки бельевые
*булавки или иглы

*ручки, маркеры и т.д.
*канцелярский нож
*мелкая шкурка на бруске
*пластилин

для начала нужно распечатать и вырезать шаблоны для самолёта.

Желательно распечатку приклеить к картону. Затем приложить их к плитке, зафиксировать кнопками и нарисовать крыло, стабилизатор и киль.


После убираем шаблоны и вырезаем канцелярским ножом(или медицинским скальпелем) с припуском 1-2 мм заготовки.

Старайтесь не задеть линии заготовок.

Теперь нужно обработать заготовки. Отмечаем ограничительные линии, берём брусок со шкуркой и придаём профиль крылу и стабилизаторам движениями вперёд-назад.




Обрабатывать нужно уверенно, плавно, без рывков, иначе можно испортить деталь. Конечно, можно придать профиль и разогретым утюгом, но этот способ не всегда получается.


Если Вы придали деталям нужную форму, то можно приступить к склеиванию. Ни в коем случае не хватайтесь за клей Момент! Растворители превратят самолёт в кашу, поэтому нужно использовать клей ПВА. Рейку длинной 18-25 см смазывают клеем с одной и с другой стороны,и оставляют на 5 минут, чтобы клей впитался в дерево. У стабилизатора и крыла отмечают середину и снизу промазывают клеем по средней линии. Далее закрепляем всё прищепками, киль прикрепляют булавками к крылу также по средней линии.

Поделиться: