Искатель кабелей под землей самодельный. Способы обнаружения скрытой проводки — используем специальные и самодельные приборы

При ремонте квартиры часто требуется знать места, по которым проведена скрытая электропроводка. Это необходимо по нескольким причинам.

Во-первых, при ремонте обычно необходимо сверлить отверстия для крепления в стенах различного оборудования. При этом попадание в проводку сверла дрели может, в лучшем случае, привести к порче электросети, а в худшем случае – нанести травму человеку.

Во-вторых, при замене старой скрытой проводки также требуется знать, где она проложена.

К сожалению, при ремонте не всегда имеется или частном доме. И хотя в соответствии с правилами по установке сетей (ПУЭ) кабеля должны размещаться строго горизонтально или вертикально, часто эти требования не выполняются, а схема домашнего электроснабжения смонтирована по самым коротким путям.

При ремонте вышедшей из строя скрытой проводки желательно также без разрушения стены точно определить места разрывов.

Различают два основных подхода к обнаружению закрытой проводки:

  1. По исправной сети обычно протекает переменный электрический ток.
  2. В соответствии с законами физики вокруг проводов с протекающим электричеством возникает электромагнитное поле. Большинство устройств для обнаружения скрытой проводки используют это свойство электрического тока.

  3. Другой принцип предполагает задействование с катушкой индуктивности. При попадании в его электромагнитное поле проводов или арматуры оно будет искажено, что будет отражено индикатором прибора.

Особенности использования приборов обнаружения скрытой электрической проводки

Для обнаружения скрытой проводки выпускается большое число различных приборов. Они имеют различную сложность, возможности и, конечно, разную цену. Стоимость таких устройств может колебаться в широких пределах.

Среди электриков-профессионалов большой популярностью пользуется индикатор скрытой проводки Е121. С помощью этого устройства можно находить внутреннюю электросеть в штукатурке на глубине до 7 см. Прибор прост в обращении и относительно недорогой. Цена составляет около 1350 рублей.

Широко используются в домашних условиях приборы серии MS из Китая. Достоинство этих устройств – малая цена. Недостаток состоит в том, что они реагируют не только на провода, но и на другой металл.

Поэтому для эффективной работы с приборами MS необходимо иметь определенный опыт с тем, чтобы отличать сигналы от медных проводов и от других предметов из металла.

Цена детектора MS 158 составляет 350-900 рублей.

Вместо усилителя в схему можно добавить мультивибратор и светодиод. При обнаружении скрытой проводки происходит запуск первого и мигание источника света.

Как найти обрыв скрытой проводки?

Возможным виновником пропадания света в доме может стать скрытая проводка. Обрыв в кабелях может возникнуть, например, из-за разрушения старой электросети или повреждения ее при сверлении стены.

Обнаружить обрыв в скрытой проводке можно с помощью указанных выше промышленных приборов. Как правило, в месте разрыва устройство подает соответствующий знак. Например, перестает издаваться звуковой сигнал.

Если в качестве индикатора используется приемник, то в месте обрыва издаваемый им звук, будет отличаться от обычного для него шума.

При отсутствии в наличии каких-либо устройств обрыв можно попытаться найти с помощью обычной таким инструментом, знает практически каждый). Этот метод работает только в случае, если произошел обрыв фазы.эта статья .

Для обнаружения проблемного места индикаторную отвертку при включенной сети надо медленно вести вдоль скрытой проводки и следить за поведением горящей лампочки.

Всякие отклонения от нормального свечения могут указывать на место обрыва.

Для случая, когда произошел разрыв нулевого провода, такой метод не действует. Чтобы проверить «ноль», необходимо сменить фазировку проводов.

Выводы :

  1. При ремонте и замене проводов сети часто необходимо обнаружить скрытую проводку.
  2. Для нахождения такой электросети имеется большое количество промышленных приборов, как отечественного, так и зарубежного производства.
  3. Для обнаружения обрыва можно использовать как специальные промышленные приборы, так и простые методы, в том числе, с использованием индикаторной отвертки.

Демонстрация прибора обнаружения внутренней электропроводки на видео

Если кабельная линия повреждена, то это чревато экономическими потерями при передачах электрического тока, может возникнуть короткое замыкание, что приведет к поломке запитанных приборов или подстанций. При нарушении целостности изоляционного материала может возникнуть опасность удара электрическим током.

Поиск повреждений кабельный линий

Повреждение линии может стать причиной отключения от электропитания жилых домов, хозяйственных объектов, системы управления и контроля цехов и предприятий, транспортных средств. Отыскивание нарушений в роботе кабельной линии имеет первоочередное значение.

Какие бывают повреждения

Подземные и надземные линии передачи электрического тока могут повреждаться по многим причинам. Самые распространены следующее ситуации:

  1. Замыкание одной или более жил на землю;
  2. Замыкание нескольких жил одновременно между собой;
  3. Нарушение целостности жил и заземление их как оборванных;
  4. Обрыв жил без заземления;
  5. Возникновение коротких замыканий даже при незначительном повышении напряжения (заплывающий пробой), которые пропадают при нормализации напряжения;
  6. Нарушение целостности изоляционного материала.

Для установления истинного типа нарушения передачи электроэнергии пользуются специальным прибором – мегаомметром.


Мегаомметр

Предполагаемый поврежденный кабель отсоединяют от источников питания и рабочего прибора. На обоих концах провода измеряют такие показатели:

  • Фазной изоляции;
  • Линейной изоляции
  • Отсутствие нарушений целостности жил, проводящих электрический ток.

Этапы определение мест повреждения кабельных линий

Отыскивание проблематичных зон в кабеле включает три основных этапа, благодаря которым достаточно быстро устраняется нерабочий участок:


Первый этап осуществляется с использованием специального оборудования. В этих целях используют трансформаторы, кенотрономы или же приборы способные генерировать высокие частоты. При прожигании за 20 — 30 сек показатель сопротивления значительно падает. Если в проводнике присутствует влага, то необходимая процедура прожигания проходит намного дольше и максимальное сопротивление, которого удается достигнуть составляет 2 -3 тыс Ом.


АИП-70 установка для прожигания кабеля

Намного дольше происходит этот процесс в муфтах, при этом показатели сопротивления могут изменятся волнообразно, то повышаются, то обратно падают. Процедуру прожигания проводят до тех пор, пока не наблюдается линейное понижение сопротивления.

Сложность определение места повреждения кабеля состоит в том, что длина кабельной линии может достигать несколько десятков километров. Поэтому на втором этапе нужно определить зону повреждения. Чтобы справиться с поставленной задачей используют эффективные методики:

  • Методика измерения ёмкости проводника;
  • Методика зондирующего импульса;
  • Создание петли между жилами;
  • Создание в проводнике колебательного разряда.

Выбор методики зависит от предполагаемого типа повреждений.

Емкостный метод

На основе емкости проводника вычисляют длину от свободного конца проводника до зоны разрыва жилы.


Схема определения повреждений емкостным методом

Применяя переменный и постоянный ток измеряют емкость жилы, что повреждена. Расстояние измеряют, основываясь на том, что емкость проводника напрямую зависит от его длины.

с1/lx = c2/l – lx,

где, c1 и c2 – емкость кабеля на обоих концах, l –длина исследуемого проводника, lх – искомое растения до места предполагаемого обрыва.

Из представленной формулы не трудно определить длину кабеля до зоны обрыва, которая равняется:

lх = l * c1/(c1 + c2).

Импульсный метод

Методика применима практически во всех случаях повреждения проводника, за исключением заплывающих пробоев, причиной которых является повышенная влажность. Поскольку в таких случаях сопротивление в проводнике свыше 150 Ом, что является недопустимым для импульсного метода. Он основывается на подаче, с помощью переменного тока, импульса-зонда к поврежденной области и улавливании ответного сигнала.


Временная развертка зондирующих отраженных сигналов при импульсном методе определения мест повреждения: 1, 2, …, m – единичные процессы, повторяющиеся с частотой 500 — 1000 Гц.

Эта процедура осуществляется с помощью специального оборудования. Поскольку скорость передачи импульса постоянная и составляет 160 метров за микросекунду, то легко рассчитать расстояние до зоны повреждения.

Проверка кабеля производится на приборе ИКЛ-5 или же ИКЛ-4.

Прибор ИКЛ-5

Экран сканера отображает импульсы разной формы. Исходя из формы можно примерно определить тип повреждения. Также импульсный метод дает возможность найти место где возникло нарушение в передаче электрического тока. Хорошо данный метод работает если оборвана одна или несколько жил, а плохой результат получается при коротком замыкании.

Метод петли

В этом методе применяется специальный мост из переменного тока, позволяющий измерять изменения сопротивления. Создание петли возможно при наличии хотя бы одной рабочей жили в кабеле. Если возникла ситуация с обрыванием всех жил, следует воспользоваться жилами кабеля, что располагается параллельно. При соединении перебитой жилы с рабочей по одну сторону проводника образуется петля. К противоположной стороне жил подсоединяют мост, который может регулировать сопротивление.


Схема определения повреждений кабеля методом петли

Поиск повреждения силового кабеля при помощи данной методики имеет ряд недостатков, а именно:

  • Продолжительное время подготовки и измерений;
  • Полученные измерения не совсем точны.
  • Необходимо наличие закороток.

В силу этих причин метод применяют крайне редко.

Метод колебательного РАЗРЯДА

Используют метод если причиной повреждения послужил заплывающий пробой. Метод подразумевает использование кенотронной установки, от которой по поврежденной жиле подается напряжение. Если в процессе работы возникает пробой в кабеле, там обязательно формируется разряд с устойчивой частотой колебаний.

Учитывая тот факт, что электромагнитная волна имеет постоянную скорость, то можно легко определить место повреждения на линии. Это можно сделать, сопоставив периодичность колебания и скорость.


Схема определения повреждений методом колебательного разряда

Установив область повреждения, в предполагаемую зону отправляют оператора, который найдет точку повреждения силового кабеля. Для этого используют уже совсем другие методы, такие как:

  • Акустическое улавливание искрового разряду;
  • Метод индукции;
  • Метод вращающейся рамки.

Акустический метод

Этот вариант отыскивания повреждения используется для подземных линий. При этом оператору нужно создать искровой разряд в мести нарушения работы кабеля в земле. Метод работает в случае если в точке повреждения есть возможность создать сопротивление более 40 Ом. Сила звуковой волны, которую может создать искровой разряд, зависит от глубины, на которой размещается кабель, а также от структуры грунта.


Схема определения повреждений акустическим методом

В качестве прибора способного генерировать необходимый импульс используют кенотрон, в схему которого необходимо дополнительное включить шаровой разрядник и высоковольтный конденсатор. В роли акустического приемника используется электромагнитный датчик или же датчик-пьезо. Дополнительно используют усилители звуковой волны.

Метод индукции

Это универсальный метод для поиска всех возможных типов нарушений в работе кабеля, кроме этого, позволяет определить поврежденную кабельную линию и глубину на которой она залегает под землей. Используют для обнаружения муфт, соединяющих кабель.

Схема определения повреждений кабеля методом индукции

Основой данного метода является возможность уловить изменений в электромагнитном поле, что возникают при движении тока по электрической линии. Для этого пропускают ток, что имеет частоту 850 — 1250 Гц. Сила тока при этом может находиться в пределах нескольких долей ампера до 25 А.

Зная каким образом происходят изменения исследуемого электромагнитного поля не составит труда отыскать место нарушения целостности кабеля. Для того чтобы достаточно точно определить место, можно воспользоваться выжиганием кабеля и переводом однофазного замыкание в двух- или трехфазное.

В этом случае нужно создать цепь «жила-жила». Преимуществом такой цепи является то, что ток направляется по противоположных направлениях (по одной жиле вперед, по второй – обратно). Таким образом концентрация поля значительно возрастает и отыскать место повреждения значительно легче.

Метод рамки


Схема определения повреждений кабеля методом рамки

Это хороший способ для отыскивания нерабочих зон на поверхности линии электропередач. Принцип действия очень схож с методом индукции. Подключается генератор к двум жилами или же к одной жиле и оболочке. Затем на кабель с повреждением накладывается рамка, что вращается вокруг оси.

К месту нарушения должны отчетливо проявляются два сигнала – минимум и максимум. За предполагаемой зоной сигнал не будет колебаться, не давая пиков (монотонный сигнал).

Гражданин К. давно мечтал поселиться где-нибудь на природе, вдали от шумной суетливой цивилизации большого города, среди тишины и покоя гармонии мира. И вот его мечта сбылась: он купил небольшой земельный участок на окраине села под строительство, в хорошем месте и даже с небольшим заброшенным садом… но тут-то ему пришлось столкнуться с таким проблематичным вопросом, как поиск трасс труб и кабельных линий, ведь не зная где они расположены:

  1. При строительстве можно повредить их, а если кабель находится под напряжением, то и подвести под риск собственную жизнь;
  2. О подключении к электричеству, газо- и водопроводу, не зная, где он проходит, можно забыть.

Но как найти эти злосчастные линии? Разрывать весь грунт и искать наугад?.. Вовсе нет! Просто нужно обратиться к помощи такого полезного прибора, как трассоискатель, позволяющего отыскать линии быстро и безопасно. Сегодня прибор можно приобрести в каждом специализированном магазине, можно изготовить трассоискатель своими руками. А как, мы и расскажем далее. Но, прежде, стоит разобраться: что это за прибор такой, трассоискатель.

Немного теории

Итак, трассоискатель - это уникальный прибор, позволяющий обнаружить линию прохождения кабеля или залегания труб. Современные устройства делятся на два типа по принципу работы;

  • Контактный принцип;
  • Индукционная разновидность.

Контактный принцип используется в случае разрыва кабеля, находящегося под напряжением.

Прибор, работающий по индукционному принципу, способен определять, как кабель под напряжением, так и пассивную трассировку, то есть, не подающую активных сигналов подземную коммуникацию. Индукционный метод более сложный и базируется на улавливании устройством высоких частот и регистрации данных показателей на специальном индикаторе.

Трассоискатели также подразделяются на одно- и многочастотные. Первые - наиболее приемлемый вариант, такие приборы несложно смонтировать самостоятельно, и применяются они для определения коммуникаций, расположенных под грунтом в том случае, когда одни трассы не пересекают другие, и, таким образом, не перекликаются исходящие от них сигналы.

Многочастотные устройства - более сложная конструкция и используются для определения сигналов трасс в случае высокой плотности кабельных линий и трубопроводов. Мультичастотные устройства способны определять указанную в программе частоту, не сбиваясь на другие. Современные приборы оборудованы программным обеспечением, что значительно облегчает работу, которая для пользователя заключается в одном нажатии на клавишу и прочтении полученной информации, высветившейся на индикаторе.

Технология сборки

Устройство обладает несложной конструкцией и состоит из двух компонентов - приемника, на который поступает сигнал, и генератора, регулирующего работу прибора. Чем сильнее генератор, тем мощнее будет прибор и значительнее дальность расстояния, на котором он способен определять линии. Так, устройство, работающие от аккумулятора в 24 В, способно трассировать местность на 4 км и работать около ста часов бесперебойно. На работающий по такому принципу трассоискатель схема приведена ниже.

Как видно из чертежа, устройство комплектуется следующим образом: на транзисторе Т1, П14 собирается модулятор и генератор. При условиях, что выключатель приходит в разомкнутое состояние, транзистор с цепью базы создают генератор частой 1 кГЦ. И при включении контура, даже частичном, становится возможным увеличить нагрузку на прибор. Таким образом, при включении конденсатора, резко увеличивается мощность генератора, и он начинает работать в УКВ диапазоне.

Чтобы сконструировать трассоискатель кабельных линий своими руками, необходимо тщательным образом проработать его вторую часть, приемник.

Здесь важнейшим условием является тот факт, что магнитная антенна настраивается на напряжение звуковых частот генератора. Проходящий через транзисторы сигнал создает стабильную схему, а транзисторные каскады обеспечивают необходимое усиление, что гарантирует бесперебойную работу устройства.

Чтобы смонтировать кабельный трассоискатель схема на который приведена выше, потребуется следующее:

  • Берем гетинаксовую плату, которая будет основой будущего прибора.
  • Устанавливаем на переднюю панель клеммы питания.
  • Наматываем на ферритовое кольцо (диаметр 0.8 см) трансформатор первый, а второй - на стальной сердечник.

При сборке руководствуйтесь чертежами, чтобы не допустить ошибки.

Как сделать трассоискатель из старого плеера?

У многих в подвалах и на антресолях можно найти массу занятных вещиц, которые при умелой доработке, могут еще прослужить своему хозяину не один год. Так, из простого старого плеера можно сконструировать трассоискатель.

Добавляем клеммы питания и займемся поисковой катушкой. Для этого разбираем РКН и снимаем контактную катушку. Чтобы демонтировать пластину реле, нужно зажать ее в тисках и при помощи молотка выбить ее из катушки. Эта работа займет пару секунд не более. Теперь, когда все детали для будущего прибора получены, соединяем обмотки и вставляем в сердцевину стержень, который зажимаем с двух сторон.

В качестве зажимов может выступить любой подручный предмет, например пластмассовая трубка, которую достаточно только немного подточить, согнуть, чтобы деталь подходила по размеру и выполняла свою рабочую функцию фиксатора. Потратим еще пару минут на корректировку всего устройства, проверяем разводку, разъемы, надежность конструкции. Затем припаиваем провод к катушке, который после должен быть соединен с усилителем.

Работа готова. Как видите, это совсем не сложно для тех, кто имеет хотя бы элементарные знания в электронике.

Теперь вы знаете, как собрать трассоискатель своими руками схемы и поэтапная инструкция поможет вам выполнить эту нехитрую работу быстро и качественно. А нам только остается напоследок пожелать вам удачи и доброго дня!

Третий глаз (Часть 3)

Приборы для поиска и диагностики подземных инженерных коммуникаций

Благодаря многонаправленным антеннам повышается чувствительность приборов и уменьшается вероятность ошибок. Оператору больше нет необходимости ходить зигзагами по исследуемой территории – стоит только нажать на кнопку питания и выбрать тип нужной трассы, и прибор сам найдет ее и отобразит на экране. Такой подход позволяет пользоваться локатором даже работникам с невысокой квалификацией и практически без специального обучения.

Акустические течеискатели (локаторы)

Достаточно широко применяется ряд методов нахождения подземных коммуникаций, основанных на акустической локации. Часто такие методы используются для поиска утечек воды и газа в трубопроводах из любых металлических и неметаллических материалов. Поэтому приборы для поиска утечек так и называются – течеискатели.

Акустический неактивный метод

Вытекая из трубы, жидкость или газ издает шум, который может уловить акустический течеискатель с функцией пассивного обнаружения, иначе говоря – неактивный акустический детектор. Акустические датчики-микрофоны, которые могут быть контактными, прикладываемыми непосредственно к грунту, или бесконтактными, улавливают звуковые волны, распространяющиеся по грунту. Когда оператор подходит к месту утечки, шум становится сильнее. Определив точку, где звук самый сильный, можно установить местонахождение утечки. Этот метод работает при залегании трубопровода на глубине примерно до 10 м.

Если имеется доступ к трубе через смотровые колодцы, можно прослушивать шум, прикрепив микрофон к трубе или рукоятке вентиля, так как звуковые волны лучше распространяются по материалу трубопровода. Этим способом можно выявить участок трубы между двумя колодцами, на котором есть протечка, а далее, по силе звука, к какому из колодцев она ближе. Точность метода невелика, зато им можно выявить утечку на намного большей глубине, чем при прослушивании с поверхности. Если у прибора имеется функция псевдокорреляции, он может по разности силы звука рассчитывать расстояние до места утечки и уточнять результат поиска.

В комплект прибора обычно входят наушники, мощный усилитель звука (усиление до 5000–12 000 раз), фильтр помех, пропускающий звуки только той частоты, которые заложены в его «память», а также электронный блок, который обрабатывает и записывает результаты и может составлять отчеты. Некоторые приборы совместимы с компьютером.

Считается, что использование течеискателей позволяет сократить расходы на устранение аварий на коммунальных трубопроводах до 40–45%.

Однако у акустических течеискателей есть ряд недостатков. Результаты исследований сильно зависят от наличия шумовых помех, поэтому лучше всего они работают в условиях тишины при исследовании трубопроводов неглубокого заложения – до 1,5 м. Впрочем, современные приборы оснащены микропроцессорами цифровой обработки сигнала и фильтрами, отсеивающими шумовые помехи. Необходимо точно знать маршрут прокладки исследуемого трубопровода, чтобы пройти точно над ним и прослушать шум от утечки в разных точках.

Акустический активный метод – по генератору ударов

В ситуации, когда необходимо отыскать неметаллическую трубу и поэтому нельзя использовать электромагнитный трассоискатель, а к какой-то части трубы имеется доступ, одной из альтернатив является звуковой активный метод. В этом случае применяют генератор звуковых импульсов (ударник), который устанавливается в доступном месте на трубе и методом ударного воздействия создает акустические волны в материале трубы, которые затем улавливаются с поверхности земли акустическим датчиком прибора (микрофоном). Таким образом можно определить местоположение трубопровода. Конечно, этот метод можно использовать и на металлических трубах. Дальность действия прибора зависит от разных факторов, таких как глубина заложения и материал трубы, а также вид грунта. Сила и частота ударов могут регулироваться.

Акустический электрический – по звуку электрического разряда

Если в месте повреждения кабеля можно создать искровой разряд с помощью генератора импульсов, то звук от этого разряда можно прослушивать с поверхности грунта микрофоном. Для возникновения устойчивого искрового разряда необходимо, чтобы величина переходного сопротивления в месте повреждения кабеля превышала 40 Ом. В состав генератора импульсов входят высоковольтный конденсатор и разрядник. Напряжение с заряженного конденсатора через разрядник мгновенно передается на кабель, возникшая электромагнитная волна вызывает пробой в месте повреждения кабеля, и раздается щелчок. Обычно генерируется по одному импульсу через несколько секунд.

Этот метод применяют для локации кабелей всех видов с глубиной залегания до 5 м. Применять этот метод для поиска повреждений у кабелей в металлическом рукаве, проложенных открыто, не рекомендуется, так как звук хорошо распространяется по металлической оболочке и точность локализации места будет невысокой.

Ультразвуковой метод

В основе данного метода лежит регистрация ультразвуковых волн, не слышных человеческому уху. При выходе находящихся под высоким давлением (или наоборот – подсосе при высоком разрежении) жидкости или газа из трубопровода через трещины в сварных швах, неплотности в запорной арматуре и уплотнениях возникает трение между молекулами вытекающего вещества и молекулами среды, в результате генерируются волны ультразвуковой частоты. Благодаря коротковолновой природе ультразвука оператор может точно определять местоположение утечки даже при сильном шумовом фоне, в наземных газопроводах и подземных трубопроводах. Также с помощью ультразвуковых приборов обнаруживают неисправности в электрооборудовании – дуговые и коронные разряды в трансформаторах и распределительных шкафах.

В состав ультразвукового течеискателя входят датчик-микрофон, усилитель, фильтр, преобразователь ультразвука в слышимый звук, который транслируется наушниками. Чем ближе микрофон к месту утечки, тем сильнее звук в наушниках. Чувствительность прибора регулируется. На ЖК-экране результаты сканирования отображаются в цифровом виде. В комплект может входить контактный щуп, с помощью которого также можно прослушивать колебания. Для активного выявления мест негерметичности в состав прибора включают генератор (передатчик) ультразвуковых колебаний, который можно поместить в исследуемый объект (например, емкость или трубопровод), излучаемый им ультразвук будет выходить наружу через неплотности и трещины.

Преимущества. Метод простой, для поиска утечек не требуется сложной процедуры, обучение работе с прибором занимает около 1 часа и при этом метод весьма точный: позволяет обнаруживать утечки через мельчайшие отверстия на расстоянии 10 м и более на фоне сильных посторонних шумов.

Корреляционный метод

В данном случае на трубу по обе стороны от места утечки (например, в двух колодцах или на запорной арматуре на поверхности земли) устанавливают два (или больше) датчиков виброакустических сигналов (пьезодатчиков). От датчиков сигнал передается в прибор по кабелям или по радиоканалу. Поскольку расстояние от датчиков до места утечки разное, звук от утечки будет приходить к ним в разное время. По разнице во времени поступления сигнала на датчики электронный блок-коррелятор рассчитывает функцию кросс-корреляции и место нахождения повреждения между датчиками.

Данный метод применяется на сложных для акустического сканирования зашумленных участках, таких как городские и заводские территории.

Точность расчета зависит от точности измерения времени прохождения сигналов прибором, точности измерения расстояния между датчиками и точности значения скорости распространения звука по трубе. Как утверждают специалисты, при правильном проведении данных измерений надежность, чувствительность и точность корреляционного метода значительно превышают результаты других акустических методов: отклонение не более 0,4 м и вероятность обнаружения утечек составляет 50–90%. Точность результата не зависит от глубины залегания трубопровода. Метод очень устойчив к помехам.

Недостаток корреляционного метода состоит в том, что результаты искажаются при наличии неоднородностей в трубах: засоров, изгибов, ответвлений, деформаций, резких изменений диаметра. Корреляционные течеискатели – дорогостоящие и сложные приборы, работать на которых могут только специально подготовленные специалисты.

Газоискатели

Для выявления утечек газов из трубопроводов используются газоискатели. Микронасос, который входит в состав прибора, закачивает пробу воздуха с проверяемого места. Отобранная проба сравнивается с эталонным воздухом (например, методом нагревания спиралью: при нагревании пробы с газом и воздуха температура спирали будет разная), и прибор фиксирует наличие в пробе газа. Также имеются газоискатели (сравнивающие пробу и эталонный воздух) на основе других принципов. Такое оборудование способно уловить газ или другое опасное летучее вещество даже в том случае, если его в воздухе содержится всего 0,002%!

Газоискатель – легкий и компактный, удобный и простой в эксплуатации прибор. Однако он весьма чувствителен к температуре окружающего воздуха: при слишком высокой или низкой температуре его работоспособность снижается и даже может стать нулевой, например при температуре ниже –15 и выше +45 °С.

Комплексные приборы

Как мы видим, у локаторов каждого типа имеются определенные ограничения и недостатки. Поэтому для служб, эксплуатирующих подземные коммуникации, современные трассопоисковые приборы часто выполняются комплексными, состоящими из аппаратуры разных типов, например, в них вместе с электромагнитным трассоискателем могут входить акустический локатор, георадар и пирометр, а акустический приемник может иметь еще и канал приема электромагнитных сигналов. Поиск может проводиться одновременно на частотах электромагнитных и радиоволн, либо прибор может переключаться в режимы приема магнитных, радио- или акустических волн. Причем модульная конструкция приборов позволяет комплектовать комплексы индивидуально для каждой компании-клиента в зависимости от его конкретных задач. Использование комплексных приборов повышает вероятность точного нахождения местоположения объекта, облегчает и ускоряет проведение работ по обслуживанию подземных коммуникаций.

Инновации в отрасли оборудования для поиска подземных коммуникаций

Запись координат объектов поиска в GPS/ ГЛОНАСС

У некоторых современных трассопоисковых приборов есть возможность определять координаты обнаруженного объекта по GPS/ ГЛОНАСС и записывать их (даже онлайн) в базу данных цифрового плана участка, созданного методом автоматизированного проектирования CAD, обозначив там выявленные инженерные коммуникации. Параллельно данные поступают на компьютер в головной офис компании. Информация может быть представлена в виде простых меток, которые помогут оператору экскаватора визуально ориентироваться на схеме, показанной на дисплее машины. Еще проще будет работать оператору, если управление экскаватором частично автоматизировано и связано с GPS/ ГЛОНАСС – автоматика поможет избежать повреждения коммуникаций.

Новинки трассопоискового оборудования

Ведущие разработчики данного оборудования предлагают сканеры, которые сканируют стройплощадку и на основе анализа характеристик местного грунта и прочих условий на строительном объекте автоматически указывают оптимальную величину частоты, на которой рекомендуется вести локацию подземных коммуникаций. Для достижения наилучшей чувствительности некоторые трассоискатели оснащаются функцией автоматического подбора оптимальной частоты сигнала – это удобно в условиях «грязного» эфира и когда под землей проходит сразу несколько трасс.

Появились приборы с двумя выходами, которые могут теперь подсоединяться и вести исследования одновременно двух инженерных коммуникаций.

Приборы оснащаются высококонтрастным жидкокристаллическим дисплеем, изображение на котором видно даже при освещении прямыми солнечными лучами, информативность дисплеев повышается: в режиме реального времени отображаются все необходимые параметры: глубина коммуникации, направление движения к ней, интенсивность сигнала и т. п. На экране прибора даже может формироваться наглядная схема расположения коммуникаций, трассоискатель способен одновременно «видеть» до трех подземных коммуникаций, «рисуя» на большом дисплее карту их расположения и пересечений.

Георадары (Подробнее о георадарах см. Часть 1)

Работа георадара основана на излучении электромагнитного импульса в грунт и регистрации отраженного сигнала от подземных объектов и границ среды с разными электрофизическими свойствами.

Области применения георадара огромны: он позволяет определять глубину залегания коммуникаций, местоположение пустот и трещин, зоны переувлажнения и уровень грунтовых вод, характер залегания геологических границ, зоны разуплотнения, незаконные врезки, дефекты земляного полотна, наличие арматуры, мин и снарядов, а также другие объекты.

Основное распространение георадиолокация получила в области поиска подземных коммуникаций, во многом благодаря тому, что этот метод обнаруживает коммуникации из любого материала, в том числе неметаллические.

Для поиска подземных коммуникаций подбирают георадар с антеннами, имеющими среднюю центральную частоту (200–700 МГц). Поиск на таких частотах обеспечивает глубину зондирования до 5 м, а также позволяет находить кабели и трубы малого диаметра.

При необходимости обследования больших территорий используются георадарные системы с массивом антенн, устанавливаемые на транспортное средство. Такие системы сканируют до нескольких гектаров в день.

Современные георадары могут находить подземные коммуникации в режиме реального времени и имеют возможность совместного использования с GPS-оборудованием, что позволяет привязываться к местности и, используя полученные координаты, переносить георадарные данные в CAD-системы, а также наносить обнаруженные коммуникации на имеющиеся схемы.

Долгое время считалось, что георадар – это сложная в понимании и управлении техника, однако с появлением современных технологий и продвинутого программного обеспечения ситуация в корне изменилась. Георадары лидирующих производителей имеют максимальную автоматизацию получения и интерпретации данных, что исключает ошибки, связанные с человеческим фактором. Таким образом, на сегодняшний день георадар является незаменимым помощником в поиске подземных коммуникаций и по праву может считаться «третьим глазом» инженера-изыскателя.

Прибор для определения скрытой проводки: сигнализатор, индикатор, детектор скрытой проводки.
Каждый раз, когда мы сверлим отверстие в стене, то всегда имеется опасность повредить внутреннюю проводку. Что нужно предпринять, что бы случайно не повредить проводку? Для этого необходимо специальным прибором проверить ее наличие на данном участке стены, отметить место кабеля и минуя ее переразметить места для сверления.
А что, если проводка имеет разрыв? Как найти место обрыва?
Прибор для поиска скрытой проводки.
Extech DA30 - бесконтактный датчик переменного тока.
Работает в диапазоне от 200мА до 1000А, определяет наличие электромагнитного поля создаваемый переменным напряжением.
Способен работать через экранированные провода, кабель-каналы, металлические части выключателей и распределительные коробки.
Ручная установка позволяет отрегулировать чувствительности прибора для обнаружения проводки через стены.
Имеет звуковую и визуальную индикацию.
В комплект поставки прибора нахождения скрытой проводки входит карманный зажим с четырьмя батареями таблеточного типа LR44.
Отдельные модели приборов для поиска скрытой проводки имеют возможность определить даже когда он находится без напряжения.
Обычно порядок работы с таким прибором следующий:
1. Подключаем звуковой генератор к кабелю
а. Для кабелей с одним концевым коннектором подсоединяем красный зажим типа крокодил к проводу, а чёрный зажим к заземлению корпуса устройства.
б. Для проводов без концевого коннектора подсоедините красный зажим к одному проводу, а чёрный зажим к другому проводнику.
в. Для кабелей с модульными соединителями вставляем модули RJ11 непосредственно в соответствующий коннектор кабеля.
2. Устанавливаем переключатель звукового сигнала (Tone) в положение «Вкл.» (нажимаем кнопку).
3. На индуктивном пробнике нажимаем на копку которая находится сбоку «Вкл./Выкл.».
4. Подносим изолированный кончик пробника к нужному проводу, чтобы обнаружить сигнал, исходящий от звукового генератора.
5. Вращая регулятор чувствительности, настраиваем прибор на нужный уровень и проверяем кабель на предмет неисправности.
6. Самый громкий звуковой сигнал исходит от проводов, подключённых к звуковому генератору.
Примечание: Разъём для наушников находится на дне пробника.

Тестер - мультиметр для поиска скрытой проводки

LA-1014 - представляет собой прибор искатель срытой проводки (называют кабель - тестером) и мультиметр, т.е. универсальный прибор содержащий два в одном.
Прибор позволяет обнаружить скрытую проводку без напряжения, проверить состояние кабельных линий в телефонной и компьютерной и силовой сетях. С помощью LA-1014 можно определять обрыв, короткое замыкание и перехлест жил. Проверка коннекторов RJ45/RJ11.
Мультиметр позволяет измерять величину постоянного и переменного напряжения, силу тока, сопротивление, прозвонку диодов.
Состав прибора для поиска скрытой проводки.
1. Модульный соединитель RJ11.
2. Измерительные щуп с зажимом типа крокодил.
3. Светодиодный дисплей для проверки кабельных линий в телефонных сетях.
4. Светодиодный индикатор низкого уровня заряда батареи звукового генератора.
5. Кнопка Cont для режима проверки на обрыв.
6. Кнопка Tone для звукового генератора (переключатель звукового сигнала).
7. Кнопка Sel для выбора типа сигнала.
16. Измерительные щуп с зажимом типа крокодил.
17. Регулятор настройки уровня громкость - чувствительность.
18. Кнопка включения питания.
19. Отсек для источников питания.
20. Гнездо для наушников.

Схема прибора для определения повреждения проводки
Кроме определения скрытой проводки, прибор позволяет определить обрыв провода шнура питания таких как, видеокамеры, галогенные прожекторы, электрические утюги, дрели, мясорубки и подобных приборов. Шнур для подключения 220В, как правило его длина 1,5 - 2 метра 2-3х жильного кабеля имеющий сетевую вилку на конце. Из-за длительного использования провод подвергается механической деформации и напряжению, которые могут привести к обрыву, или реже, внутреннему замыканию в любой точке шнура. В подобных случаях мы заменяем кабель, т.к. найти дефектное место провода довольно сложно.
В 3-жильных кабелях практически трудно определить обрыв провода, без пробных надрезов кабеля, особенно в ПВХ-оболочке. Схема самодельного прибора поможет достаточно просто и быстро обнаружить место обрыва провода в 1-жильном, 2-жильном, и 3-жильном кабеле, без физического повреждения провода. Она построена на микросхеме CD4069, которая содержит 6 инверторов стандартной КМОП логики.
На инверторах N3 и N4 собран генератор импульсов, рабочая частота которого составляет примерно 1000 Гц (диапазон звуковых частот), она определяется номиналами установленных резисторов R3, R4 и конденсатора С1. Усилитель собранный на N1 и N2 усиливает слабый сигнал поступающий с датчика, тем самым определяется наличие переменного поля вокруг сетевого провода 230в. Наличие или отсутствие напряжение на выходе 10 усилителя N2 можете разрешить или заблокировать работу генератора.
Когда датчик (зонд) находится не так близко к проводу, к которому подведено переменное напряжение, выходной потенциал на ножке 10 инвертора N2 остается низким. В результате этого открытый диод D3 шунтирует цепь генератора. Одновременно, выход 6 инвертора Н3 имеет низкий потенциал - транзистор Т1 в закрытом состоянии - LED1 не светится. Когда датчик приближается ближе к проводнику с напряжением 230 в AC, 50 Гц, то при каждом положительном полупериоде переменного напряжения, потенциал выхода 10 инвертора N2 становится высоким, запускается генератор колебаний с частоте около 1кГц, красный светодиод (LD1) мигает. (Из-за инерционности свойств зрения, мы видим светодиод горящий непрерывно).
В виду циклической работы уменьшается ток потребления светодиодом, напряжения 3В постоянного тока достаточно для питания схемы прибора.

Схема прибора для обнаружения скрытой проводки .
Питание схемы осуществляется от двух элементов типа AG13 LR44, или им подобные по 1,5в R6 - AA или аккумуляторная батарея. Схема потребляет ток не более 3 мА при обнаружении сети переменного тока. Для аудио-визуальной индикации можно применить небольшой зуммер или ЖК, включаем их вместо Led 1 и резистора R5, но в таком случае потребление тока уже составит около 7 мА.
При помощи этого прибора можно быстро обнаружить неисправную лампу в последовательно соединенной новогодней гирлянде, если питание от 230 в переменного тока.
Данную схему можно смонтировать в небольшом отрезке трубки из ПВХ. Перед поиском обрыва проводам мультиметром или тестером проверьте на наличие напряжения, тока.
Затем подайте переменное 230в в линию, подключив провод имеющий повреждение к фазе, нейтраль к остальным проводам. Однако, если любой из оставшихся проводов тоже имеет неисправность, то оба провода, подключите к нейтрали. Для определения обрыва порой достаточно подать фазное напряжение на проверяемый провод.
В качестве датчика используется отрезок монтажного провода длиной 5 см. Для обнаружения места обрыва, включаем прибор переключателем S1 и медленно перемещаем зонд вдоль поврежденного провода, начиная с входной точки и двигаясь к концу. Светодиод светится при наличия поля, созданным напряжением переменного тока, когда датчик будет находится над место обрыва, то светодиод гаснет.
Во время тестирования может понадобиться изогнуть зонд, для увеличения чувствительности, так что бы при движении зонд был ближе к кабелю. Для исключения ложных срабатываний во время тестирования избегайте сильных электрических полей.
Техническое описание микросхемы CD4069 125 Kb

Схема простого прибора.
Прибор содержит всего 7 деталей: полевой транзистор VT1 типа КП302, КП303, делитель напряжения состоящий из двух резисторов R1 и R2, стрелочный индикатор от старого магнитофона РА1, выключатель питания SA1, элемент питания 1,5в. Датчиком WA1 является отрезок медного провода длиной несколько сантиметров. При приближении антенны WA1 к сетевому проводу находящийся под напряжением, он попадает в электромагнитное поле. Датчик подключен к затвору полевого транзистора VT1, в результате сопротивление исток - сток увеличивается. Протекающий ток через индикатор заставляет стрелку отклоняться. Чем больше ток, тем сильнее поле.
Настройка прибора сводится к подбору резистора R1, при отсутствии поля стрелка не должна отклоняться.

Если под рукой нет прибора для обнаружения скрытого провода, то его можно изготовит за короткое время, для этого необходим провод любой длины, желательно двухжильный, трансформатор малогабаритный, любой и кассетный магнитофон или плеер. Трансформатор выполнит роль датчика, припаиваем провод к трансформатор, а другой конец ко входу звукоснимателя. Скрытый провод должен быть под сетевым напряжением, т.е. включить выключатель свет в ванной и т.д. и подносим трансформатор к предполагаемому месту проводки - в динамике должен появиться фон переменного тока при приближении к скрытому проводу.
Оборвался провод – что делать? Обнаружитель электрической проводки.

Поделиться: