Чем отличаются «Буран» и «Шаттл. Космический корабль «Шаттл Что такое лунный шаттл

До недавнего времени космическая экспозиция музея науки в Лос-Анджелесе (California science center) была очень маленькой и оставляла впечатление некоего запустения. Но всё кардинально поменялось с тех пор, как сюда на вечную стоянку прибыл один из трёх космических челноков, шаттлов – Эндевор. Это событие и «устремило» меня («Эндевор» переводится с английского как «стремление») в калифорнийский музей науки.

Вместо предисловия
Все мы знаем историю космической программы «Буран». Логично рассказывать о шаттле, сравнивая его с Бураном, как это обычно и делается, поскольку две эти программы ставили примерно одинаковые цели. Но чтобы грамотно написать и о Шаттле, и о Буране, грамотно их сравнить, и аргументировано сделать правильный вывод, что наш Буран, конечно же, был лучше, надо проделать большую работу. За один раз нам в сайт это было сделать сложно, поэтому текст, который вы читаете, посвящён только Шаттлу. Мы будем очень благодарны человеку, который сможет написать подобный опус о нашем Буране, несмотря на то, что уже немало написано на эту тему книг и снято фильмов.

Шаттл стоит в ангаре, специально выстроенном для этого огромного космического корабля. Первое, что мы встречаем на пути в этот ангар, – это огромные колёса с толстыми шинами на них. Именно эти покрышки стояли на шаттле во время его последний миссии, и пришлось им несладко.

В процессе посадки температура шин меняется более чем на 90 градусов, а внешнее давление резко поднимается от нуля до нормальной величины в течение часа. Обычные автомобильные шины могли бы лопнуть или начать выпускать воздух. Покрышки для этого космического корабля специально рассчитывались на такие нагрузки. На этой фотографии видно, как дымились шины при посадке шаттла. Теперь они стоят в музее.

Как и в большинстве самолётов, шины шаттлов заполняются азотом. Для этого есть несколько причин. Азот лучше переносит изменения давления и температуры, чем кислород, содержащийся в воздухе. Кроме того азот, в отличие от атмосферного кислорода, не горит. В дополнение к этому молекулы азота по размеру больше молекул кислорода. Это означает, что азот будет просачиваться через резину покрышек гораздо медленнее, чем обычный воздух. В условиях космического вакуума это свойство очень важно.

Следующим экспонатом на нашем пути будет космический туалет. Рядом с ним установлен телеэкран, на котором показывают, как этим туалетом надо пользоваться мужчинам и женщинам и какие ошибки совершают неопытные космонавты. Довольно познавательно, но мы двинемся дальше.

Войдя в дверь ангара, где покоится космический корабль, испытываешь лёгкий шок. Какой же он огромный! Фотографии, к сожалению, не могут этого передать, но, поверьте мне, глядя на шаттл понимаешь: именно такого размера и никак не меньше были все космические корабли в фантастических фильмах.

Обходишь вокруг него, и становится ясно, что вот на таких-то кораблях вполне могли бы путешествовать герои звёздных войн, Алиса Кира Булычёва, герои повестей Лема и Стругацких.

Факты:

  1. Шаттл содержит около 370 километров кабелей и проводов.
  2. Каждый шаттл имел специальный грузовой контейнер размерами 5 на 18 метров, вмещавший до 30 тонн груза.
  3. Приземлившийся шаттл с выпущенными шасси в высоту достигал 17 метров – это выше трёхэтажного дома. Длина шаттла – 37 метров, размах крыльев - 24 метра.
  4. Корпус космического корабля сделан из алюминия, как и у многих самолётов. Чёрная и белая плитка, покрывающая шаттл, – это его защитная термооболочка, предохраняющая корпус от плавления во время запуска и посадки.

Жара и холод

Во время полёта шаттл всегда открывает грузовой отсек, как показано на фото ниже. Внутри на створках закреплены радиаторы кондиционеров внутренней системы охлаждения, которые надо стараться держать в тени. Поэтому на орбите шаттл болтается вверх ногами, поворачиваясь к Солнцу брюхом, закрывая от него радиаторы.

При входе в атмосферу некоторые части корабля нагреваются до 1700 градусов Цельсия – достаточно для плавления стали, не говоря уж об алюминии. На орбите же рабочая температура обшивки нередко падает ниже -160 градусов. Разные типы теплоизоляции защищают корабль и экипаж от экстремальных температур. Теплоизоляционный слой вокруг корпуса шаттла состоит из специальных белых и чёрных плиток. Чёрные выдерживают температуры до 1200 градусов, белые – до 700. Режущая кромка крыла и нос нагреваются больше всего, поэтому они покрыты специальной защитой, выглядящей как гладкий чёрный пластик. Она выдерживает температуры до 1800 градусов.

Взгляните на эту фотографию. Каждая из более чем 30 000 теплоизоляционных плиток имеет свои размеры и форму, чтобы точно повторять форму корабля в строго определённом месте. На каждой плитке нарисован свой шифр, указывающий в каком месте обшивки она должна быть закреплена. Эти плитки обладают очень низкой теплопроводностью. На видео видно, как кусок материала теплоизоляции, нагретый до 1700 градусов, достают из печи. Уже через пару секунд края кубика остывают так, что его можно брать руками, хотя в центре материал ещё раскалён до жёлтого свечения – температура плавления стали.

Факты:

  1. Основной ингредиент изоляционных плиток – кремний, который добывают из обычного песка.
  2. Черное покрытие на нижней части шаттла помогает рассеивать тепло. Белые плитки сверху шаттла отражают солнечные лучи, чтобы шаттл не нагревался.
  3. Плитки теплоизоляции очень лёгкие (как пенопласт) и хрупкие. Вы с лёгкостью сможете раскрошить такую плитку в руках.

Летающий лапоть

Несмотря на то, что шаттл был первым космическим кораблём, умевшим садится на аэродромы, почти как обыкновенный самолёт, его посадка проходит совсем не так, как садятся самолёты. Основные двигатели не работают во время путешествия вниз с орбиты сквозь атмосферу. При приближении к взлётной полосе шаттл летит в 20 раз быстрее пассажирского самолёта, а его траектория в 7 раз круче той, что используют самолёты. Космонавты и инженеры называют шаттл летающим кирпичом, потому что его «полёт» гораздо больше похож на простое падение с орбиты.

Для того чтобы начать посадку, шаттл разворачивается двигателями по направлению его движения и включает их. Это замедляет его движение по орбите, и шаттл начинает в буквальном смысле падать из космоса вниз под действием силы тяжести. После того, как шаттл начинает двигаться к поверхности планеты, он опять поворачивается к ней носом.

В космосе и в верхних слоях атмосферы шаттл маневрирует при помощи вспомогательных двигателей на носу и боках корабля. В плотных слоях атмосферы экипаж уже может задействовать закрылки, что делает шаттл немного похожим на самолёт. Но всё равно основное управление осуществляется за счёт боковых двигателей. Посадочная скорость шаттла составляет 370 км/ч.
http://www.youtube.com/watch?v=YOxZsbyjSb8

Толстые туристы

На этой фотографии видна причина, по которой никогда ни в один из шаттлов не будут пускать туристов. Это белый входной люк, отмеченный жёлтой стрелкой. Как мне пояснил экскурсовод, половина населения Америки, к сожалению, не сможет пролезть внутрь из-за своих размеров. Поэтому туристов внутрь решено не пускать. А жаль! Там внутри так много интересного.

Ядовитые огнедышащие ноздри

На этой же фотографии видны пять передних дюз шаттла. Они использовались для маневрирования, пока шаттл был на орбите. Вы видите, что отверстия расположены под разными углами: каждый двигатель предназначался для разных типов маневрирования. С другой стороны расположена точно такая же пятёрка дюз. На самом деле, на носу у шаттла не 10 дюз, а больше. Дополнительные 6 расположены на носу сверху, как видно на фото ниже.

Поскольку топливо, использовавшееся для работы этих двигателей, ужасно токсичное, топливные баки, располагавшиеся внутри шаттла, убрали, а часть дюз герметично закрыли, чтобы посетители музея не могли случайно отравиться.

Двигатели

При взлёте три основных двигателя включались вместе с боковыми ракетными ступенями. Топливом для них служил водород и кислород, выкачиваемый из центрального топливного бака.

После посадки на Землю, двигатели всегда снимались с корабля для проверки и ремонта. Все двигатели были взаимозаменяемыми и могли быть установлены на любой из четырёх шаттлов.

Это было очень удобно. Специалисты всегда имели наготове 9 двигателей: три для взлёта шаттла, три для второго шаттла на случай необходимости эвакуации с орбиты и ещё три на всякий случай. Всего был изготовлен 51 «движок», из них 35 летали на Эндеворе.


Тестирование ракетного двигателя

Стартовая система

Стартовая система шаттла состоит из трёх частей: маршевые двигатели шаттла, две боковые ракетные ступени и огромный топливный бак (оранжевый на фото). Во время старта включаются двигатели шаттла и двигатели боковых ракет. Отработав своё, ракеты отделяются и падают вниз. Шаттл продолжает лететь, используя свои двигатели и черпая топливо из оранжевого топливного бака. Важно понимать, что никаких двигателей у оранжевого топливного бака нет: это просто большая канистра с топливом, которую шаттлу приходится брать с собой, чтобы добраться до орбиты.

Главная проблема этой стартовой системы – она не может быть использована ни для чего другого, кроме вывода шаттла на орбиту. Плюс – это то, что боковые ракетные ступени падают в океан и потом используются повторно.

Дорогие друзья! Если вам понравился этот рассказ, и вы хотите быть в курсе новых публикаций о космонавтике и астрономии для детей, то подписывайтесь на новости наших сообществ

May 3rd, 2016

Одним из главных элементов экспозиции национального музея авиации и космонавтики Smithsonian (Центр имени Удвара Хейзи) является космический шаттл “Дискавери”. Собственно данный ангар в первую очередь и был построен, чтобы принять космический корабль NASA после завершения программы Спейс Шаттл. В период активного использования челноков, в центре Удвара Хейзи был выставлен тренировочный корабль Энтерпрайз, использовавшийся для испытаний в атмосфере и как весово-габаритная модель, перед созданием первого, по-настоящему космического челнока “Колумбии”.


Космический шаттл “Дискавери”. За 27 лет службы этот челнок побывал в космосе 39 раз.

Корабли построенные в рамках программы «Космическая транспортная система»
Схема корабля

К сожалению, большей части амбициозных планов агентства так и не суждено было сбыться. Высадка на Луне решила все политические задачи США в космосе на тот момент, а практического интереса полёты в дальний космос не представляли. Да и интерес общественности стал угасать. Кто сейчас сходу вспомнит имя третьего человека на Луне? На момент последнего полёта корабля Аполлон по программе "Союз-Апполон" в 1975 году финансирование американского космического агентства было радикально сокращено по решению президента Ричарда Никсона.

У США были более насущные проблемы и интересы на Земле. В итоге дальнейшие пилотируемые полёты американцев вообще оказались под вопросом. Недостаток финансирования и повышенная солнечная активность привели и к тому, что NASA потеряла станцию Skylab , проект, намного опередивший своё время и имевший преимущества даже перед сегодняшней МКС. У агентства просто не было кораблей и носителей, чтобы вовремя поднять её орбиту, и станция сгорела в атмосфере.

Спейс Шаттл "Дискавери" - носовая часть
Видимость из кабины пилотов достаточно ограниченная. Также видны носовые форсунки двигателей системы ориентации.

Всё, что на тот момент удалось сделать NASA, это подать программу космического челнока как экономически целесообразную. Спейс Шаттл должны были взять на себя как обеспечение пилотируемых полётов, запуск спутников, а так же их ремонт и обслуживание. NASA обещала взять на себя все запуски космических аппаратов, включая военные и коммерческие, что за счёт использования многоразового корабля, могло бы вывести проект на самоокупаемость при условии нескольких десятков запусков в год.

Спейс Шаттл "Дискавери" - крыло и панель питания
В задней части челнока, возле двигателей видна панель питания, через которую корабль был подсоединён на стартовом столе, в момент запуска панель отделялась от челнока.

Забегая вперёд, скажу, что на самоокупаемость проект так никогда и не вышел, но на бумаге всё выглядело достаточно гладко (возможно так и было задумано), поэтому на строительство и обеспечение кораблей деньги выделены были. К сожалению, построить новую станцию у NASA возможности не было, все тяжёлые ракеты “Сатурн” были истрачены в лунной программе (последняя запустила Skylab), а на строительство новых не было средств. Без космической станции Спейс Шаттл имели достаточно ограниченное время пребывания на орбите (не более 2 недель).

Вдобавок запасы dV многоразового корабля были намного меньше, чем у одноразовых советских Союзов или американских же Аполлонов. В результате Спейс Шаттл имел возможность выхода лишь на низкие орбиты (до 643 км), во многом именно этот факт предопределил, что и на сегодняшний день, 42 года спустя, последним пилотируемым полётом в дальний космос была и остаётся миссия Аполлона-17.

Хорошо видны крепления створок грузового отсека. Они достаточно маленькие и сравнительно хрупкие, так как грузовой отсек открывался только в невесомости.

Спейс Шаттл “Индевор” с открытым грузовым отсеком. Сразу позади кабины экипажа виден стыковочный узел для работы в составе МКС.

Космические челноки были способы поднимать на орбиту экипаж до 8 человек и, в зависимости от наклонения орбиты, от 12 до 24,4 тонн грузов. И, что немаловажно, спускать с орбиты грузы весом до 14,4 тон и выше при условии, что они вмещались в грузовой отсек корабля. Советские и российские космические аппараты такими возможностями не обладают до сих пор. Когда NASA опубликовала данные по грузоподъёмности грузового отсека Спейс Шаттл, в Советском Союзе всерьёз рассматривали идею похищения советских орбитальных станций и аппаратов кораблями Спейс Шаттл. Предлагалось даже оснащать советские пилотируемые станции вооружением, для защиты от возможного нападения челнока.

Сопла системы ориентации корабля. На тепловой обшивке хорошо видны следы от последнего входа корабля в атмосферу.

Корабли Спейс Шаттл активно использовались для орбитальных запусков беспилотных аппаратов, в частности, космического телескопа Хаббл. Наличие экипажа и возможность ремонтных работ на орбите позволяли избегать постыдных ситуаций в духе Фобос-Грунт. Так же Спейс Шаттл работал с космическими станциями по программе Мир-Спейс Шаттл в начале 90-х и до недавнего времени доставлял модули для МКС, которые при этом не требовалось оснащать собственной двигательной установкой. Из-за высокой стоимости полётов полностью обеспечить ротацию экипажей и снабжение МКС (по задумке разработчиков - свою основную задачу) корабль не смог.

Спейс Шаттл "Дискавери" - керамическая обшивка.
Каждая плитка обшивки имеет свой серийный номер и обозначение. В отличии от СССР, где для программы “Буран” плитки керамической обшивки делали с запасом, НАСА построила цех где специальная машина по серийному номеру изготавливала плитку нужных размеров автоматически. После каждого полёта приходилось заменять несколько сотен таких плиток.

Схема полёта корабля

1. Старт - зажигание двигательные установки I и II ступеней, управление полетом осуществляется отклонением вектора тяги двигателей челнока, и до высоты порядка 30 километров дополнительно управление обеспечивается отклонением руля. Ручное управление на этапе взлёта не предусмотрено, корабль управляется компьютером, аналогично обычной ракете.

2. Отделение твердотопливных ускорителей происходит на 125 секунде полета при достижении скорости 1390 м/с и высоты полета около 50 км. Чтобы не повредить челнок, они отделяются с помощью восьми малых ракетных двигателей на твердом топливе. На высоте 7,6 км ускорители раскрывают тормозной парашют, а на высоте 4,8 км - основные парашюты. На 463 секунде с момента старта и на расстоянии 256 км от места старта происходит приводнение твердотопливных ускорителей, после чего их буксируют к берегу. В большинстве случаев ускорители удавалось заправлять и использовать повторно.

Видеозапись полёт в космос с камер твердотопливных ускорителей.

3. На 480 секунде полета происходит отделение подвесного топливного бака (оранжевого цвета), учитывая скорость и высоту отделения, спасение и повторное использование топливного бака потребовало бы оснастить его такой же тепловой защитой, как и сам челнок, что, в конечном счёте, сочли нецелесообразным. По баллистической траектории бак падает в Тихий или Индийский океан, разрушаясь в плотных слоях атмосферы.
4. Выход орбитального корабля на околоземную орбиту, с помощью двигателей системы ориентации.
5. Выполнение программы орбитального полёта.
6. Ретроградный импульс гидразиновыми двигателями ориентации, сход с орбиты.
7. Планирование в земной атмосфере. В отличие от “Бурана” посадка осуществляется только вручную, поэтому без экипажа корабль летать не мог.
8. Посадка на космодром, корабль приземляется со скоростью около 300 километров в час, что намного выше скорости посадки обычных самолётов. Для сокращения тормозного пути и нагрузки на шасси, сразу после касания раскрываются тормозные парашюты.

Двигательная установка. Хвост челнока способен раздваиваться, выступая на заключительных этапах посадки воздушным тормозом.

Несмотря на внешнее сходство, космоплан имеет очень мало общего с самолётом, это скорее очень тяжёлый планер. Шаттл не имеет собственных запасов топлива для основных двигателей, поэтому двигатели работают только пока корабль соединён с оранжевым топливным баком (по этой же причине двигатели установлены ассиметрично). В космосе и во время посадки корабль использует только маломощные двигатели ориентации и два маршевых двигателя на гидразиновом топливе (малые двигатели по бокам от основных).

Были планы снабдить Спейс Шаттлы реактивными двигателями, но из-за высокой стоимости и снижения полезной нагрузки корабля весом двигателей и топлива, от реактивных двигателей решили отказаться. Подъёмная сила крыльев корабля небольшая, а сама посадка осуществляется исключительно за счёт использования кинетической энергии схода с орбиты. По сути, корабль планировал с орбиты прямо на космодром. По этой причине у корабля есть только одна попытка для захода на посадку, развернуться и зайти на второй круг челнок уже не сможет. Поэтому НАСА построила по всему миру несколько резервных полос для посадки челноков.

Спейс Шаттл "Дискавери" - люк экипажа.
Эта дверь используется для посадки и высадки членов экипажа. Люк не снабжён воздушным шлюзом и в космосе блокируется. Выходы в открытый космос, стыковку с Мир и МКС экипаж выполнял через шлюз в грузовом отсеке на “спине” корабля.

Герметичный костюм для взлёта и посадки космического челнока.

Первые тестовые полёты челноков снабжались креслами-катапультами, которые позволяли аварийно покинуть корабль, потом катапульту убрали. Так же был один из аварийных сценариев посадки, когда экипаж покидал корабль на парашютах на последнем этапе спуска. Характерный оранжевый цвет костюма был выбран для упрощения проведения спасательных работ в случае аварийной посадки. В отличие от космического скафандра, этот костюм не имеет системы тепло-распределения и для выхода в открытый космос не предназначен. В случае полной разгерметизации корабля даже при наличии гермокостюма шансов выжить хотя бы несколько часов - немного.

Спейс Шаттл "Дискавери" - шасси и керамическая обшивка днища и крыла.

Скафандр для работы в открытом космосе программы Спейс Шаттл.

Катастрофы
Из 5 построенных кораблей 2 погибли вместе со всем экипажем.

Катастрофа Шаттла “Челленджер” миссия STS-51L

28 января 1986 года челнок “Челленджер” взорвался через 73 секунды после старта из-за аварии уплотнительного кольца твердотопливного ускорителя, прорвавшаяся сквозь щель, струя огня расплавила топливный бак и привела ко взрыву запаса жидкого водорода и кислорода. Экипаж, по всей видимости, уцелел непосредственно во взрыве, но кабина не была оборудована парашютами или другими средствами спасения и разбилась о воду.

После катастрофы Челленджера, NASA разработала несколько процедур спасения экипажа, во время взлёта и посадки, но ни одни из этих сценариев всё равно не смог бы спасти экипаж “Челленджера”, даже если бы он был предусмотрен.

Катастрофа шаттла “Колумбия” миссия STS-107
Обломки шаттла “Колумбия” сгорают в атмосфере.

Участок тепловой обшивки кромки крыла оказался повреждён при запуске двумя неделями ранее, отвалившимся куском теплоизоляционной пены, покрывающей бак с топливом (бак заполняется жидким кислородом и водородом, поэтому изоляционная пена позволяет избежать образование льда и уменьшить испарение топлива). Этот факт заметили, но не придали должного значения исходя из того, что в любом случае астронавты мало что могут сделать. В результате пролёт проходил штатно до этапа возвращения в атмосферу 1 февраля 2003 года.

Здесь хорошо заметно, что тепловой щит покрывает только кромку крыла. (Именно здесь “Колумбия” получила повреждение).

Под воздействием высоких температур плитка тепловой обшивки разрушилась и на высоте около 60 километров, высокотемпературная плазма прорвалась в алюминиевые конструкции крыла. Ещё через несколько секунд крыло разрушилось, на скорости порядка 10 мах, корабль потерял устойчивость и был уничтожен аэродинамическими силами. До того как в экспозиции музея появилась “Дискавери”, на этом же месте был выставлен Энтерпрайз (Тренировочный шаттл который совершал только атмосферные полёты).

Комиссия по расследованию инцидента вырезала фрагмент крыла музейного экспоната для проведения экспертизы. Специальной пушкой по кромке крыла выстреливались куски пены и оценивался ущерб. Именно этот эксперимент помог прийти к однозначному заключению о причинах катастрофы. Большую роль в трагедии сыграл и человеческий фактор, сотрудники NASA недооценили ущерб, полученный кораблём на этапе старта.

Простой обзор крыла в открытом космосе мог выявить повреждение, но ЦУП не дал экипажу такой команды, считая, что проблему можно решить по возвращению на Землю, а даже если повреждения необратимы, экипаж всё равно ничего не сможет сделать и нет смысла напрасно волновать астронавтов. Хотя это было не так, к старту готовился челнок “Атлантис”, который можно было бы использовать для проведения спасательной операции. Аварийный протокол, который примут на вооружение во всех последующих полётах.

Среди обломков корабля удалось найти видеозапись которую астронавты вели во время входа в атмосферу. Официально запись обрывается за несколько минут до начала катастрофы, но я сильно подозреваю, что NASA решила не публиковать последние секунды жизни астронавтов по этическим соображениям. Экипаж не знал о грозящей им гибели, глядя на бушующую за иллюминаторами корабля плазму кто-то из астронавтов шутит “Не хотелось бы сейчас оказаться снаружи”, не зная, что именно этого ждёт весь экипаж буквально через несколько минут. Жизнь полна мрачной иронии.

Прекращение программы

Логотип окончания программы Спейс Шаттл (слева) и памятная монета (справа). Монеты изготовлены из металла побывавшего в космосе в рамках первой миссии шаттла “Колумбия” STS-1

Гибель космического шаттла "Колумбия" поставила серьёзный вопрос о безопасности оставшихся 3 кораблей, находившихся к тому моменту в эксплуатации свыше 25 лет. В результате, последующие полёты стали проходить с сокращённым экипажем, а в резерве всегда держали ещё один челнок, готовый к пуску, который смог бы провести спасательную операцию. В сочетании со сменой акцентов правительства США на коммерческое освоение космоса, эти факторы привели к прекращению программы в 2011 году. Последним полётом челноков стал старт «Атлантиса» к МКС 8 июля 2011 года.

Программа Спейс Шаттл сделала огромный вклад в освоение космоса и развития знаний и опыта о работе на орбите. Без Спейс Шаттл, строительство МКС было бы совершенно другим и вряд ли на сегодняшний день было бы близко к завершению. С другой стороны, существует мнение, что программа Спейс Шаттл сдерживала NASA последние 35 лет, требуя больших затраты на обслуживание челноков: стоимость одного полёта составляла около 500 миллионов долларов, для сравнения, - запуск каждого “Союза” обходился всего в 75-100.

Корабли потребляли средства, которые могли бы пойти на развитие межпланетных программ и более перспективных направлений в исследовании и развитии космоса. Например, строительство более компактного и дешёвого многоразового или одноразового корабля, для тех миссий, где 100 тонный Спейс Шаттл был просто не нужен. Откажись NASA от Спейс Шаттл, развитие космической отрасли США могло бы пойти совсем по-другому.

Как именно, сейчас уже трудно сказать, возможно, у NASA просто не было выбора и не будь челноков, гражданское освоение космоса Америкой могло вообще прекратиться. Уверенно утверждать можно одно, на сегодняшний день корабли Спейс Шаттл были и остаются единственным примером успешной многоразовой космической системы. Советский “Буран” хоть и был построен как многоразовый корабль, в космосе побывал только однажды, впрочем, это совсем другая история.

Взят у lennikov в Виртуальная экскурсия по национальному аэрокосмическому музею Smithsonian: часть вторая

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

Пока космические запуски были редкими, вопрос о стоимости ракет-носителей особого внимания к себе не привлекал. Но по мере освоения космоса он стал приобретать все большее значение. Стоимость ракеты-носителя в общей стоимости запуска космического аппарата бывает разная. Если носитель серийный, а космический аппарат, который он запускает, уникальный, стоимость носителя — около 10 процентов от общей стоимости запуска. Если космический аппарат серийный, а носитель уникальный - до 40 процентов и более. Высокая стоимость космической транспортировки объясняется тем, что ракета-носитель применяется один-единственный раз. Спутники и космические станции работают на орбите или в межпланетном пространстве, принося определенный научный или хозяйственный результат, а ступени ракеты, имеющие сложную конструкцию и дорогое оборудование, сгорают в плотных слоях атмосферы. Естественно, возник вопрос о снижении стоимости космических запусков за счет повторного запуска ракет-носителей.

Существует много проектов таких систем. Один из них - космический самолет. Это крылатая машина, которая, подобно воздушному лайнеру, взлетала бы с космодрома и, доставив полезный груз на орбиту (спутник или космический корабль), возвращалась бы на Землю. Но создать такой самолет пока невозможно, главным образом из-за необходимого соотношения масс полезного груза и полной массы машины. Экономически невыгодными или трудноосуществимыми оказывались и многие другие схемы летательных аппаратов многоразового использования.

Тем не менее в США все-таки взяли курс на создание космического корабля многоразового использования. Многие специалисты были против столь дорогостоящего проекта. Но его поддержал Пентагон.

Разработка системы «Спейс Шаттл» («космический челнок») началась в США в 1972 году. В ее основу была положена концепция космического летательного аппарата многоразового использования, предназначенного для вывода на околоземные орбиты искусственных спутников и других объектов. Космический летательный аппарат «Шаттл» представляет собой связку из пилотируемой орбитальной ступени, двух твердотопливных ракетных ускорителей и большого топливного бака, расположенного между этими ускорителями.

Стартует «Шаттл» вертикально с помощью двух твердотопливных ускорителей (диаметр каждого 3,7 метра), а также жидкостных ракетных двигателей орбитальной ступени, которые питаются топливом (жидкий водород и жидкий кислород) от большого топливного бака. Твердотопливные ускорители работают только на начальном участке траектории. Время их работы чуть больше двух минут. На высоте 70-90 километров ускорители отделяются, спускаются на парашютах на воду, в океан, и буксируются к берегу, с тем чтобы после восстановительного ремонта и зарядки топливом использовать их вновь. При выходе на орбиту топливный бак (диаметром 8,5 метра и длиной 47 метров) сбрасывается и сгорает в плотных слоях атмосферы.

Самый сложный элемент комплекса орбитальная ступень. Она напоминает ракетный самолет с треугольным крылом. Помимо двигателей, в ней размещены кабина экипажа и грузовой отсек. Орбитальная ступень осуществляет сход с орбиты как обычный космический аппарат и производит посадку без тяги, только за счет подъемной силы стреловидного крыла малого удлинения. Крыло позволяет орбитальной ступени совершать некоторый маневр как по дальности, так и по курсу и в конечной счете производить посадку на специальную бетонную полосу. Посадочная скорость ступени при этом намного выше, чем у любого истребителя. - около 350 километров в час. Корпус орбитальной ступени должен выдерживать температуру 1600 градусов Цельсия. Теплозащитное покрытие состоит из 30922 силикатных плиток, приклеенных к фюзеляжу и плотно подогнанных друг к другу.

Космический летательный аппарат «Шаттл» своего рода компромисс и в техническом, и в экономическом отношении. Максимальный полезный груз, доставляемый «Шаттлом» на орбиту, - от 14,5 до 29,5 тонны, а его стартовая масса - 2000 тонн, то есть полезная нагрузка составляет всего 0,8-1,5 процента от полной массы заправленного корабля. В то же время этот показатель для обычной ракеты при том же полезном грузе составляет 2-4 процента. Если же взять в качестве показателя отношение полезного груза к весу конструкции, без учета топлива, то преимущество в пользу обычной ракеты еще более возрастет. Такова плата за возможность хотя бы частично использовать повторно конструкции космического аппарата.

Один из создателей космических кораблей и станций, летчик-космонавт СССР, профессор К.П. Феоктистов, так оценивает экономическую эффективность «Шаттлов»: «Что и говорить, создать экономичную транспортную систему непросто. Некоторых специалистов в идее «Шаттла» смущает еще и следующее. Согласно экономическим расчетам он оправдывает себя примерно при 40 полетах в год на один образец. Получается, что в год только один "самолет", чтобы оправдать свою постройку, должен выводить на орбиту порядка тысячи тонн разных грузов. С другой стороны, имеет место тенденция к снижению веса космических аппаратов, увеличению продолжительности их активной жизни на орбите и вообще к снижению количества запускаемых аппаратов за счет решения каждым из них комплекса задач».

С точки зрения эффективности создание транспортного корабля многоразового использования такой большой грузоподъемности дело преждевременное. Снабжать орбитальные станции гораздо выгоднее с помощью автоматических транспортных кораблей типа «Прогресс» Сегодня стоимость одного килограмма груза, выводимого в космос «Шаттлом» составляет 25000 долларов, а «Протоном» - 5000 долларов.

Без прямой поддержки Пентагона проект вряд ли удалось бы довести до стадии полетных экспериментов. В самом начале проекта при штабе ВВС США был учрежден комитет по использованию корабля «Шаттл». Было принято решение о строительстве стартовой площадки для челночного корабля на базе ВВС Ванденберг в Калифорнии, с которой осуществляются запуски космических аппаратов военного назначения. Военные заказчики планировали использовать «Шаттл» для выполнения широкой программы размещения в космосе разведывательных спутников, систем радиолокационного обнаружения и наведения на цель боевых ракет, для пилотируемых разведывательных полетов, создания космических командных постов, орбитальных платформ с лазерным оружием, для «инспекции» на орбите чужих космических объектов и доставки их на Землю. Корабль «Шаттл» также рассматривался как одно из ключевых звеньев общей программы создания космического лазерного оружия.

Так, уже в первом полете экипаж корабля «Колумбия» выполнял задание военного характера, связанное с проверкой надежности прицельного устройства для лазерного оружия. Размещенный на орбите лазер должен точно наводиться на ракеты, удаленные от него на сотни и тысячи километров.

С начала 1980-х годов ВВС США готовили ряд несекретных экспериментов на полярной орбите с целью разработки перспективной аппаратуры для слежения за объектами, движущимися в воздушном и безвоздушном пространстве.

Катастрофа «Челленджера» 28 января 1986 года внесла коррективы в дальнейшее развитие космических программ США. «Челленджер» ушел в свой последний полет, парализовав всю американскую космическую программу. Пока «Шаттлы» стояли на приколе, сотрудничество НАСА с министерством обороны оказалось под вопросом. ВВС фактически распустили свою группу астронавтов. Переменился и состав военно-научной миссии, получившей наименование СТС-39 и перенесенной на мыс Канаверал.

Сроки следующего полета неоднократно отодвигались. Программа возобновилась только в 1990 году. С той поры «Шаттлы» регулярно совершали космические полеты. Они участвовали в ремонте телескопа «Хаббл», полетах на станцию «Мир», строительстве МКС.

Ко времени возобновления полетов «Шаттлов» в СССР уже был готов корабль многоразового использования, во многом превзошедший американский. 15 ноября 1988 года новая ракета-носитель «Энергия» вывела на околоземную орбиту многоразовый корабль «Буран». Он, совершив два витка вокруг Земли, ведомый чудо-автоматами, красиво приземлился на бетонную посадочную полосу Байконура, будто рейсовый лайнер «Аэрофлота».

Ракета-носитель «Энергия» базовая ракета целой системы ракет-носителей, образуемых сочетанием разного количества унифицированных модульных ступеней и способных выводить в космос аппараты массой от 10 до сотен тонн! Ее основу, стержень, составляет вторая ступень. Ее высота - 60 метров, диаметр - около 8 метров. На ней установлено четыре жидкостных ракетных двигателя, работающих на водороде (горючее) и кислороде (окислитель). Тяга каждого такого двигателя у поверхности Земли - 1480 кН. Вокруг второй ступени у ее основания пристыкованы попарно четыре блока, образующие первую ступень ракеты-носителя. На каждом блоке установлен самый мощный в мире четырехкамерный двигатель РД-170 тягой в 7400 кН у Земли.

«Пакет» блоков первой и второй ступеней и образует мощную, тяжелую ракету-носитель, имеющую стартовую массу до 2400 тонн, несущую полезную нагрузку 100 тонн.

«Буран» имеет большое внешнее сходство с американским «Шаттлом». Корабль построен по схеме самолета типа «бесхвостка» с треугольным крылом переменной стреловидности, имеет аэродинамические органы управления, работающие при посадке после возвращения в плотные слои атмосферы руль направления и элевоны. Он был способен совершать управляемый спуск в атмосфере с боковым маневром до 2000 километров.

Длина «Бурана» - 36,4 метра, размах крыла - около 24 метра, высота корабля на шасси - более 16 метров. Стартовая масса корабля - более 100 тонн, из которых 14 тонн приходится на топливо. В носовой отсек вставлена герметичная цельносварная кабина для экипажа и большей части аппаратуры для обеспечения полета в составе ракетно-космического комплекса, автономного полета на орбите, спуска и посадки. Объем кабины - более 70 кубических метров.

При возвращении в плотные слои атмосферы наиболее тепло напряженные участки поверхности корабля раскаляются до 1600 градусов, тепло же, доходящее непосредственно до металлической конструкции корабля, не должно превышать 150 градусов. Поэтому «Буран» отличала мощная тепловая защита, обеспечивающая нормальные температурные условия для конструкции корабля при прохождении плотных слоев атмосферы во время посадки.

Теплозащитное покрытие из более 38 тысяч плиток изготовлено из специальных материалов: кварцевое волокно, высокотемпературные органические волокна, частично материал на основе углерода. Керамическая броня обладает способностью аккумулировать тепло, не пропуская его к корпусу корабля. Общая масса этой брони составила около 9 тонн.

Длина грузового отсека «Бурана» - около 18 метров. В его обширном грузовом отсеке мог разместиться полезный груз массой до 30 тонн. Туда можно было поместить крупногабаритные космические аппараты - большие спутники, блоки орбитальных станций. Посадочная масса корабля - 82 тонны.

«Буран» оснастили всеми необходимыми системами и оборудованием как для автоматического, так и для пилотируемого полета. Это и средства навигации и управления, и радиотехнические и телевизионные системы, и автоматические устройства регулирования теплового режима, и система жизнеобеспечения экипажа, и многое-многое другое.

Основная двигательная установка, две группы двигателей для маневрирования расположены в конце хвостового отсека и в передней части корпуса.

«Буран» явился ответом американской военной космической программе. Потому после потепления отношений с США судьба корабля была предрешена.

Американская государственная программа STS (Space Transportation System, «Космическая транспортная система») более известна во всем мире как Space Shuttle («Космический челнок»). Данная программа была реализована специалистами NASA, ее основной целью было создание и использованием многоразового пилотируемого транспортного космического корабля, предназначенного для доставки на низкие околоземные орбиты и обратно людей и различных грузов. Отсюда собственно и название – «Космический челнок».

Над программой начали работать в 1969 году по линии финансирования двух государственных ведомств США: NASA и Минобороны. Разработка и опытно-конструкторские работы осуществлялись в рамках совместной программы NASA и ВВС. При этом специалисты применили ряд технических решений, которые ранее были опробованы на лунных модулях программы «Аполлон» 1960-х годов: эксперименты с твердотопливными ускорителями, системами их отделения и получения топлива из внешнего бака. Основу создаваемой космической транспортной системы должен был составить пилотируемый космический корабль многоразового применения. Также в систему входили наземные обеспечивающие комплексы (монтажно испытательный и стартово посадочный комплекс космического центра имени Кеннеди, расположенный на авиационной базе Ванденберг, штат Флорида), центр управления полетом в Хьюстоне (Техас), а также системы ретрансляции данных и связи через спутники и иные средства.


В работах по данной программе приняли участие все ведущие американские аэрокосмические компании. Программа была по-настоящему масштабной и национальной, различные изделия и оборудование для «Спейс Шаттл» поставляли более 1000 компаний из 47 штатов. Контракт на строительство первого орбитального корабля в 1972 году выиграла компания Rockwell International. Строительство первых двух шаттлов началось уже в июне 1974 года.

Первый полёт космического челнока «Колумбия». Внешний топливный бак (в центре) покрашен в белый цвет только в двух первых полётах. В дальнейшем бак не красили для снижения веса системы.


Описание системы

Конструктивно многоразовая транспортная космическая система Space Shuttle включала в себя два спасаемых твердотопливных ускорителя, которые выполняли роль первой ступени и орбитального многоразового корабля (орбитер, orbiter) с тремя кислородно водородными двигателями, а также большим подвесным топливным отсеком, который образовывал вторую ступень. После завершения программы космического полета орбитер самостоятельно возвращался на Землю, где выполнял посадку по-самолетному на специальных ВПП.
Два твердотопливных ракетных ускорителя работают в течение примерно двух минут после запуска, разгоняя космический корабль и направляя его. После чего на высоте примерно 45 километров они отделяются и при помощи парашютной системы приводняются в океан. После ремонта и перезаправки они используются вновь.

Сгорающий в земной атмосфере внешний топливный бак, заполненный жидким водородом и кислородом (топливо для главных двигателей), является единственным одноразовым элементом космической системы. Сам бак также является каркасом для скрепления твердотопливных ускорителей с космическим кораблем. Он отбрасывается в полете примерно через 8,5 минут после взлета на высоте около 113 километров, большая часть бака сгорает в земной атмосфере, а сохранившиеся части падают в океан.

Наиболее известной и узнаваемой частью системы является сам многоразовый космический корабль – челнок, собственно сам «спейс шаттл», который и выводится на околоземную орбиту. Данный челнок служит полигоном и платформой для проведения научных исследований в космосе, а также домом для экипажа, в состав которого может входить от двух до семи человек. Сам шаттл выполнен по самолетной схеме с треугольным в плане крылом. Для посадки он использует шасси самолетного типа. Если твердотопливные ракетные ускорители рассчитаны на использование до 20 раз, то сам челнок – до 100 полетов в космос.

Размеры орбитального корабля по сравнению с «Союзом»


Американская система Space Shuttle могла выводить на орбиту высотой 185 километров и наклонением 28° до 24,4 тонн грузов при запуске на восток с мыса Канаверал (Флорида) и 11,3 тонны при запуске с территории Центра космических полетов имени Кеннеди на орбиту высотой 500 километров и наклонением 55°. При запуске с базы ВВС «Ванденберг» (Калифорния, западное побережье) на приполярную орбиту высотой 185 километров можно было вывести до 12 тонн грузов.

Что удалось реализовать, а что из задуманного осталось лишь на бумаге

В рамках симпозиума, который был посвящен реализации программы «Спейс Шаттл», он состоялся в октябре 1969 года, «отец» шаттла Джордж Мюллер отмечал: «Наша цель – уменьшить стоимость доставки килограмма полезного груза на орбиту с 2000 долларов для Сатурна-V до уровня 40-100 долларов за килограмм. Так мы сможем открыть новую эру освоения космоса. Задачей на будущие недели и месяцы для этого симпозиума, а также для NASA и для ВВС является обеспечение уверенности в том, что мы сможем этого добиться». В целом для различных вариантов на базе космического челнока «Спейс Шаттл» прогнозировалось достижение стоимости выведения полезной нагрузки в пределах от 90 до 330 долларов за килограмм. Более того, считалось, что шаттлы второго поколения позволят снизить сумму до 33-66 долларов за килограмм.

На деле же эти цифры оказались недостижимы даже близко. Более того, по расчетам Мюллера, стоимость запуска шаттла должна была составлять 1-2,5 миллиона долларов. На деле же, по информации НАСА, средняя стоимость запуска шаттла составляла около 450 миллионов долларов. И это существенное различие можно назвать главным несоответствием между заявленными целями и реальностью.

Шаттл «Индевор» с открытым грузовым отсеком


После завершения в 2011 году программы Space Transportation System можно уже с уверенностью говорить о том, каких целей при ее реализации удалось достичь, а каких – нет.

Достигнуты цели по программе «Спейс Шаттл»:

1. Реализация доставки на орбиту грузов разного типа (разгонные блоки, спутники, сегменты космических станций, в том числе МКС).
2. Возможность проведения ремонта спутников, расположенных на низкой околоземной орбите.
3. Возможность возврата спутников назад на Землю.
4. Возможность совершать полеты с отправкой в космос до 8 человек (во время спасательной операции экипаж можно было довести до 11 человек).
5. Успешная реализация многоразовости полета и многоразового использования самого челнока и твердотопливных разгонных ускорителей.
6. Реализация на практике принципиально новой компоновки космического корабля.
7. Возможность осуществления кораблем горизонтальных маневров.
8. Большой объем грузового отсека, возможность возврата на Землю грузов массой до 14,4 тонн.
9. Стоимость и время разработки удалось уложить в сроки, которые были обещаны президенту США Никсону в 1971 году.

Не достигнутые цели и провалы:
1. Качественное облегчение доступа в космос. Вместо уменьшения стоимости доставки килограмма грузов на орбиту на два порядка, «Спейс Шаттл» на деле оказался одним из наиболее дорогих способов доставки спутников на земную орбиту.
2. Быстрая подготовка шаттлов между космическими полетами. Вместо ожидаемого срока, который оценивался в две недели между стартами, шаттлы на деле могли готовиться к запуску в космос месяцами. До катастрофы космического челнока «Челленджер» рекорд между полетами составлял 54 дня, после катастрофы – 88 дней. За все время их эксплуатации они запускались в среднем 4,5 раза в год, тогда как минимально допустимая экономически обоснованная цифра запусков составляла 28 стартов в год.
3. Простота обслуживания. Выбранные при создании шаттлов технические решения были достаточно трудоемкими в обслуживании. Главные двигатели требовали процедуры демонтажа и длительных затрат времени на сервис. Турбонасосные агрегаты двигателей первой модели требовали полной их переборки и ремонта после совершения каждого полета в космос. Плитки теплозащиты являлись уникальными – в каждое гнездо монтировалась своя плитка. Всего же их было 35 тысяч, к тому же, плитки могли быть повреждены или потеряны во время полета.
4. Замена всех одноразовых носителей. Шаттлы ни разу не стартовали на полярные орбиты, что было необходимо в основном для развертывания разведывательных спутников. В данном направлении велись подготовительные работы, однако они были свернуты после катастрофы «Челленджера».
5. Надежный доступ в космос. Четыре космических челнока означали, что потеря любого из них – это потеря 25% всего флота (летающих орбитеров всегда было не больше 4-х, шаттл «Индевор» был построен взамен погибшего «Челенджера). После катастрофы полеты прекращались на длительный срок, к примеру, после катастрофы «Челенджера» – на 32 месяца.
6. Грузоподъемность шаттлов оказалась на 5 тонн ниже требуемой спецификациями военных (24,4 тонны вместо 30 тонн).
7. Большие возможности горизонтального маневра никогда не применялись на практике по той причине, что шаттлы не совершали полетов на полярные орбиты.
8. Возврат спутников с земной орбиты прекратился уже в 1996 году, при этом за все время из космоса было возвращено всего 5 спутников.
9. Ремонт спутников оказался слабо востребован. Всего отремонтировано 5 спутников, правда, шаттлы также 5 раз проводили обслуживание знаменитого телескопа «Хаббл».
10. Реализованные инженерные решения негативно влияли на надежность всей системы. В момент взлета и посадки имелись участки, которые не оставляли экипажу шансов на спасение в аварийной ситуации.
11. Тот факт, что шаттл мог совершать только пилотируемые полеты, подвергал астронавтов риску без необходимости, к примеру, для рутинных запусков спутников на орбиту хватило бы автоматики.
12. Закрытие программы «Спейс Шаттл» в 2011 году накладывалось на отмену программы «Созвездие». Это стало причиной потери США самостоятельного доступа в космос на многие годы. Как результат имиджевые потери и необходимость приобретения мест для своих астронавтов на космических кораблях другой страны (российские пилотируемые космические корабли «Союз»).

Шаттл «Дискавери» выполняет маневр перед стыковкой с МКС


Немного статистики

Шаттлы были рассчитаны на пребывание на орбите Земли на протяжении двух недель. Обычно их полеты продолжались от 5 до 16 суток. Рекорд самого короткого полета в программы принадлежит шаттлу «Колумбия» (погиб вместе с экипажем 1 февраля 2003 года, 28-й полет в космос), который в ноябре 1981 года провел в космосе всего 2 дня 6 часов и 13 минут. Этот же шаттл совершил и самый продолжительный полет в ноябре 1996 года – 17 суток 15 часов 53 минуты.

В общей сложности за время действия данной программы с 1981 по 2011 год космическими челноками было осуществлено 135 стартов, из них «Дискавери» – 39, «Атлантис» – 33, «Колумбия» – 28, «Индевор» – 25, «Челенджер» – 10 (погиб вместе с экипажем 28 января 1986 года). Всего в рамках программы было построено пять перечисленных выше шаттлов, которые совершали полеты в космос. Еще один шаттл «Энтерпрайз» был построен первым, но изначально предназначался только для отработки наземных и атмосферных испытаний, а также проведения подготовительных работ на стартовых площадках, в космос никогда не летал.

Стоит отметить, что в НАСА планировали использовать шаттлы гораздо активнее, чем это вышло на самом деле. Еще в 1985 году специалисты американского космического агентства рассчитывали, что к 1990 году они будут совершать по 24 старта каждый год, а корабли налетают до 100 полетов в космос, на практике же все 5 челноков совершили за 30 лет всего 135 полетов, два из которых закончились катастрофой. Рекорд по количеству полетов в космос принадлежит шаттлу «Дискавери» – 39 полетов в космос (первый 30 августа 1984 года).

Посадка шаттла «Атлантис»


Американским шаттлам принадлежит и самый печальный антирекорд среди всех космических систем – по количеству погибших людей. Две катастрофы с их участием стали причиной гибели 14 американских астронавтов. 28 января 1986 года при взлете в результате взрыва внешнего топливного бака разрушился шаттл «Челленджер», это произошло на 73-й секунде полета и привело к гибели всех 7 членов экипажа, включая первого астронавта-непрофессионала - бывшую учительницу Кристу Маколифф, которая выиграла общенациональный американский конкурс на право полететь в космос. Вторая катастрофа произошла 1 февраля 2003 года во время возвращения корабля «Колумбия» из своего 28-го полета в космос. Причиной катастрофы стало разрушение наружного теплозащитного слоя на левой плоскости крыла челнока, что было вызвано падением на него куска теплоизоляции кислородного бака в момент старта. При возвращении шаттл развалился в воздухе, погибли 7 астронавтов.

Программа «Космическая транспортная система» была официально завершена в 2011 году. Все действующие шаттлы были списаны и отправлены в музеи. Последний полет состоялся 8 июля 2011 года и был осуществлен шаттлом «Атлантис» с сокращенным до 4 человек экипажем. Полет завершился рано утром 21 июля 2011 года. За 30 лет эксплуатации эти космические корабли выполнили 135 полетов, в общей сложности они совершили вместе 21 152 витка вокруг Земли, доставив в космос 1,6 тысяч тонн различных полезных грузов. В состав экипажей за это время вошло 355 человек (306 мужчин и 49 женщин) из 16 различных стран. Астронавт Фрэнклин Стори Масгрейв был единственным, кто совершил полеты на всех пяти построенных челноках.

Источники информации:
https://geektimes.ru/post/211891
https://ria.ru/spravka/20160721/1472409900.html
http://www.buran.ru/htm/shuttle.htm
По материалам из открытых источников

История программы "Спейс Шаттл" началась в конце 1960-х годов, на вершине триумфа американской национальной космической программы. 20 июня 1969 года два американца - Нейл Армстронг и Эдвин Олдрин высадились на Луне. Выиграв в "лунной" гонке, Америка блестяще доказала свое превосходство и тем самым решила свою главную задачу в освоении космоса, провозглашенную президентом Джоном Кеннеди в своей знаменитой речи 25 мая 1962 года: "Я верю, что наш народ может поставить себе задачу до конца этого десятилетия высадить человека на Луну и благополучно вернуть его на Землю".

Таким образом, 24 июля 1969 г., когда экипаж "Аполлона-11" вернулся на Землю, американская программа утратила свою цель., что сразу сказалось на пересмотре дальнейших планов и сокращении ассигнований на программу "Аполлон". И хотя полеты к Луне продолжались, Америка встала перед вопросом: а что делать человеку в космосе дальше?

То, что такой вопрос встанет, было очевидно задолго до июля 1969 г. И первая эволюционная попытка ответа была естественной и разумной: NASA предложило, используя разработанную для программы "Аполлон" уникальную технику, расширить фронт работ в космосе: провести длительную экспедицию на Луну, построить базу на ее поверхности, создать обитаемые космические станции для регулярного наблюдения за Землей, организовать заводы в космосе, наконец, начать пилотируемое исследование и освоение Марса, астероидов и дальних планет...

Даже начальный этап этой программы требовал сохранения расходов на гражданский космос на уровне не ниже $6 млрд. в год. Но Америка - богатейшая страна мира - не могла себе этого позволить: Президенту Л.Джонсону нужны были деньги на объявленные социальные программы и на войну во Вьетнаме. Поэтому еще 1 августа 1968 г., за год до высадки на Луну, было принято принципиальное решение: ограничить производство ракет-носителей "Сатурн" первым заказом - 12 экземпляров "Сатурн-1В" и 15 изделий "Сатурн-5". Это означало, что лунная техника не будет более использоваться - и от всех предложений дальнейшего развития программы "Аполлон" в итоге осталась только экспериментальная орбитальная станция "Скайлэб". Нужны были новые цели и новые технические средства для доступа людей в космос, и 30 октября 1968 г. два головных центра NASA (Центр пилотируемых космических кораблей - MSC - в Хьюстоне и Космический центр имени Маршалла - MSFC - в Хантсвилле) обратились к американским космическим фирмам с предложением исследовать возможность создания многоразовой космической системы.

До этого все ракеты-носители были одноразовыми - выводя полезный груз (ПГ) на орбиту, они расходовали себя без остатка. Космические аппараты также были одноразового применения, за редчайшим исключением в области пилотируемых кораблей - дважды слетали "Меркурии" с заводскими номерами 2, 8 и 14 и второй "Джемини". Теперь была сформулирована задача: создать систему многоразового применения, когда и ракета-носитель, и космический корабль возвращаются после полета и используются многократно, - и за счет этого снизить стоимость космических транспортных операций в 10 раз, что было очень актуально в условиях бюджетного дефицита.

В феврале 1969 г. были заказаны исследования четырем компаниям, для того, чтобы выявить наиболее подготовленную из них для заключения контракта. В июле 1970 г. уже две фирмы получили заказы на более подробную проработку. Параллельно исследования велись и в техническом директорате MSC под руководством Максима Фаже.

Носитель и корабль задумывались крылатыми и пилотируемыми. Они должны были стартовать вертикально, как и обычная РН. Самолет-носитель работал как первая ступень системы и после отделения корабля садился на аэродром. Корабль за счет бортового топлива выводился на орбиту, выполнял задание, сходил с орбиты и также приземлялся "по-самолетному". За системой закрепилось название "Space Shuttle" - "Космический челнок".

В сентябре Целевая космическая группа под руководством вице-президента С.Агню, образованная для формулирования новых целей в космосе, предложила два варианта: "по максимуму" - экспедицию на Марс, пилотируемую станцию на окололунной орбите и тяжелую околоземную станцию на 50 человек, обслуживаемую кораблями многоразового использования. "По минимуму" - только космическую станцию и космический челнок. Но президент Никсон отверг все варианты, потому что даже самый дешевый требовал 5 млрд. долларов в год.
NASA оказалось перед тяжелым выбором: нужно было или начать новую крупную разработку, позволяющую сохранить кадры и накопленный опыт, или объявить о прекращении пилотируемой программы. Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счет выведения на орбиту спутников на коммерческой основе. Проведенная в 1970 г. экономическая оценка показала, что при выполнении ряда условий (не менее 30 полетов шаттлов в год, низкий уровень эксплуатационных расходов и полный отказ от одноразовых носителей) окупаемость в принципе достижима.

Обратите внимание на этот очень важный момент в понимании истории шаттла. На этапе концептуальных исследований облика новой транспортной системы произошла замена принципиального подхода к проектированию: вместо создания аппарата для определенных целей в рамках отпущенных средств разработчики начали любой ценой, путем "притягивания за уши" экономических расчетов и будущих условий эксплуатации, спасать существующий проект челнока, сохраняя созданные производственные мощности и рабочие места. Другими словами, не челнок проектировался под задачи, а задачи и экономическое обоснование подгонялись под его проект ради спасения отрасли и американской пилотируемой космонавтики. Такой подход "продавливало" в Конгрессе "космическое" лобби, состоящее из сенаторов - выходцев из "аэрокосмических" штатов - в первую очередь, Флориды и Калифорнии.

Именно такой подход и сбил с толку советских экспертов, не понимавших истинных мотивов в принятии решения на разработку шаттла. Ведь проверочные расчеты заявленной экономической эффективности шаттла, проведенные в СССР, показали, что затраты на его создание и эксплуатацию никогда не окупятся (так оно и вышло!), а предполагаемый грузопоток "Земля-орбита-Земля" не обеспечивался реальными или проектируемыми полезными нагрузками. Не зная о будущих планах по созданию крупной космической станции, у наших экспертов сформировалось мнение, что американцы к чему-то готовятся - ведь создавался аппарат, возможности которого значительно предвосхищали все обозримые цели в использовании космоса... "Масла в огонь" недоверия, опасений и неопределенности "подливало" участие Министерства обороны США в определении будущего облика челнока. Но иначе и быть не могло, ведь отказ от одноразовых РН означал, что шаттлы должны запускать и все перспективные аппараты Минобороны, ЦРУ и Агентства национальной безопасности США. Требования военных свелись к следующему:

  • во-первых , шаттл должен был быть способен выводить на орбиту разрабатывавшийся в первой половине 1970-х годов спутник видовой оптико-электронной разведки KH-II (военного прототипа космического телескопа "Хаббл"), обеспечивающий разрешение на местности при съемке с орбиты не хуже 0,3 м; и семейство крио-генных межорбитальных буксиров. Геометрические и весовые габариты секретного спутника и буксиров определили габариты грузового отсека - длину не менее 18 м и ширину (диаметр) не менее 4,5 метра. Аналогично определилась и способность шаттла доставлять на орбиту груз массой до 29500 кг и возвращать из космоса на Землю до 14500 кг. Все мыслимые гражданские полезные грузы укладывались в указанные параметры без проблем. Однако советские эксперты, внимательно следившие за "завязыванием" проекта шаттла и не знавшие о новом американском спутнике-шпионе, выбранные габариты полезного отсека и грузоподъемность шаттла могли объяснить только желанием "американской военщины" иметь возможность инспектировать и при необходимости снимать (точнее сказать, захватывать) с орбиты советские пилотируемые станции серии "ДОС" (долговременные орбитальные станции) разработки ЦКБЭМ и военные ОПС (орбитальные пилотируемые станции) "Алмаз" разработки ОКБ-52 В.Челомея. На ОПС, кстати, "на всякий случай" была установлена автоматическая пушка конструкции Нудельмана-Рихтера.
  • во-вторых , военные потребовали, чтобы проектируемая величина бокового маневра при спуске орбитального корабля в атмосфере была увеличена с первоначальных 600 км до 2000-2500 км для удобства посадки на ограниченное количество военных аэродромов. Для запуска на околополярные орбиты (с наклонением 56º...104º) ВВС решили построить собственный технический, стартовый и посадочный комплексы на авиабазе Ванденберг в Калифорнии.

Требования военных по полезному грузу предопределили размеры орбитального корабля и величину стартовой массы системы в целом. Для увеличенного бокового маневра требовалась значительная подъемная сила на гиперзвуковых скоростях - так на корабле появилось крыло двойной стреловидности и мощная теплозащита.
В 1971 г. стало окончательно ясно, что NASA не получит $9-10 млрд., необходимых для создания полностью многоразовой системы. Это второй важный поворотный момент в истории создания шаттла. До этого у проектировщиков еще было две альтернативы - потратить много средств на разработку и построить многоразовую космическую систему с небольшой стоимостью каждого запуска (и эксплуатации в целом), либо попытаться сэкономить на этапе проектирования и перенести затраты в будущее, создав дорогую в эксплуатации систему из-за высокой стоимости разового запуска. Высокая стоимость запуска в этом случае обуславливалась наличием в составе МКС одноразовых элементов. Чтобы спасти проект, конструкторы пошли по второму пути, отказавшись от "дорогой" в проектировании многоразовой системы в пользу "дешевой" полумногоразовой, тем самым поставив окончательный крест на всех планах будущей окупаемости системы.

В марте 1972 г. на базе хьюстонского проекта MSC-040С был утвержден тот облик шаттла, который мы знаем сегодня: стартовые твердотопливные ускорители, одноразовый бак компонентов топлива и орбитальный корабль с тремя маршевыми двигателями, лишившийся воздушно-реактивных двигателей для захода на посадку. Разработка такой системы, где многократно используется все, кроме внешнего бака, оценивалась в 5.15 млрд. долларов.

На этих условиях Никсон и объявил о создании шаттла в январе 1972-го. Уже шла предвыборная гонка, и республиканцы были рады заручиться поддержкой избирателей "аэрокосмических" штатов. 26 июля 1972 г. Отделению космических транспортных систем компании North American Rockwell был выдан контракт на $2.6 млрд., включающий проектирование орбитального корабля, изготовление двух стендовых и двух летных изделий. Разработка маршевых двигателей корабля была возложена на Rocketdyne - подразделение все того же "Рокуэлла", внешнего топливного бака - на фирму Martin Marietta, ускорителей - на United Space Boosters Inc. и собственно твердотопливных двигателей - на Morton Thiokol. Со стороны NASA руководство и надзор осуществляли MSC (орбитальная ступень) и MSFC (остальные компоненты).

Первоначально летные корабли обозначались номерами OV-101, OV-102 и так далее. Изготовление первых двух началось на заводе N42 ВВС США в Палмдейле в июне 1974 г. Корабль OV-101 был выпущен 17 сентября 1976 г. и получил название "Энтерпрайз" (Enterprise) по имени звездолета из фантастического телесериала Star Trek. После горизонтальных летных испытаний его планировали переоборудовать в орбитальный корабль, но первым на орбиту должен был подняться OV-102.

В ходе испытаний "Энтерпрайз" - атмосферных в 1977 и вибрационных в 1978 г. - выяснилось, что крылья и среднюю часть фюзеляжа надо значительно усилить. Эти решения были частично внедрены на OV-102 в процессе сборки, но грузоподъемность корабля пришлось ограничить 80% номинальной. Второй летный экземпляр нужен был уже полноценный, способный запускать тяжелые спутники, а чтобы усилить конструкцию OV-101, его пришлось бы почти полностью разобрать. В конце 1978 г. родилось решение: быстрее и дешевле будет довести до летной кондиции машину для статических испытаний STA-099. 5 и 29 января 1979 г. NASA выдало Rockwell International контракты на доработку STA-099 в летный корабль OV-099 ($596.6 млн. в ценах 1979 г.), на модификацию "Колумбии" после летных испытаний ($28 млн.) и на строительство OV-103 и OV-104 ($1653.3 млн.). А 25 января все четыре орбитальные ступени получили собственные имена: OV-102 стала "Колумбией" (Columbia), OV-099 получил имя "Челленджер" (Challenger), OV-103 - "Дискавери" (Discovery) и OV-104 - "Атлантис" (Atlantis). Впоследствии, для пополнения флота шаттлов после гибели "Челленджера", был построен ВКС OV-105 "Эндевор" (Endeavour).

Итак, что же такое "Space Shuttle"?
Конструктивно многоразовая транспортная космическая система (МТКС) "Спейс Шаттл" состоит из двух спасаемых твердотопливных ускорителей, являющихся фактически I ступенью, и орбитального корабля с тремя маршевыми кислородно-водородными двигателями и подвесным топливным отсеком, образующими II ступень, при этом топливный отсек является единственным одноразовым элементом всей системы. Предусматривается двадцатикратное использование твердотопливных ускорителей, стократное - орбитального корабля, а кислородно-водородные двигатели рассчитываются на 55 полетов.

При проектировании предполагалось, что такая МТКС при стартовой массе 1995-2050 т сможет выводить на орбиту с наклонением 28.5 град. полезный груз массой 29.5 т на солнечно-синхронную орбиту - 14.5 т и возвращать на Землю с орбиты полезный груз массой 14.5 т. Предполагалось также, что количество запусков МТКС может быть доведено до 55-60 в год. В первом полете стартовая масса МТКС "Спейс Шаттл" составляла 2022 т, масса пилотируемого орбитального корабля при выведении на орбиту - 94.8 т, при посадке - 89.1 т.

Разработка такой системы - весьма сложная и трудоемкая проблема, о чем говорит тот факт, что на сегодня оказались не выполненными заложенные в начале разработки показатели по общим затратам на создание системы, стоимости ее запуска и сроки создания. Так, стоимость возросла с 5,2 млрд. дол. (в ценах 1971 г.) до 10,1 млрд. дол. (в ценах 1982 г.), стоимость пуска - с 10,5 млн. дол. до 240 млн. дол. Не удалось выдержать срок и намечавшегося на 1979 г. первого экспериментального полета.

Всего на сегодняшний день построено семь шаттлов, пять кораблей были предназначены для космических полетов, два из которых потеряны в катастрофах.

Поделиться: